-
-
Notifications
You must be signed in to change notification settings - Fork 948
/
Copy pathcartpole.py
603 lines (493 loc) · 22.3 KB
/
cartpole.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
"""
Classic cart-pole system implemented by Rich Sutton et al.
Copied from http://incompleteideas.net/sutton/book/code/pole.c
permalink: https://perma.cc/C9ZM-652R
"""
import math
from typing import Optional, Tuple, Union
import numpy as np
import gymnasium as gym
from gymnasium import logger, spaces
from gymnasium.envs.classic_control import utils
from gymnasium.error import DependencyNotInstalled
from gymnasium.vector import AutoresetMode, VectorEnv
from gymnasium.vector.utils import batch_space
class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]):
"""
## Description
This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson in
["Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem"](https://ieeexplore.ieee.org/document/6313077).
A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track.
The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces
in the left and right direction on the cart.
## Action Space
The action is a `ndarray` with shape `(1,)` which can take values `{0, 1}` indicating the direction
of the fixed force the cart is pushed with.
- 0: Push cart to the left
- 1: Push cart to the right
**Note**: The velocity that is reduced or increased by the applied force is not fixed and it depends on the angle
the pole is pointing. The center of gravity of the pole varies the amount of energy needed to move the cart underneath it
## Observation Space
The observation is a `ndarray` with shape `(4,)` with the values corresponding to the following positions and velocities:
| Num | Observation | Min | Max |
|-----|-----------------------|---------------------|-------------------|
| 0 | Cart Position | -4.8 | 4.8 |
| 1 | Cart Velocity | -Inf | Inf |
| 2 | Pole Angle | ~ -0.418 rad (-24°) | ~ 0.418 rad (24°) |
| 3 | Pole Angular Velocity | -Inf | Inf |
**Note:** While the ranges above denote the possible values for observation space of each element,
it is not reflective of the allowed values of the state space in an unterminated episode. Particularly:
- The cart x-position (index 0) can be take values between `(-4.8, 4.8)`, but the episode terminates
if the cart leaves the `(-2.4, 2.4)` range.
- The pole angle can be observed between `(-.418, .418)` radians (or **±24°**), but the episode terminates
if the pole angle is not in the range `(-.2095, .2095)` (or **±12°**)
## Rewards
Since the goal is to keep the pole upright for as long as possible, by default, a reward of `+1` is given for every step taken, including the termination step. The default reward threshold is 500 for v1 and 200 for v0 due to the time limit on the environment.
If `sutton_barto_reward=True`, then a reward of `0` is awarded for every non-terminating step and `-1` for the terminating step. As a result, the reward threshold is 0 for v0 and v1.
## Starting State
All observations are assigned a uniformly random value in `(-0.05, 0.05)`
## Episode End
The episode ends if any one of the following occurs:
1. Termination: Pole Angle is greater than ±12°
2. Termination: Cart Position is greater than ±2.4 (center of the cart reaches the edge of the display)
3. Truncation: Episode length is greater than 500 (200 for v0)
## Arguments
Cartpole only has `render_mode` as a keyword for `gymnasium.make`.
On reset, the `options` parameter allows the user to change the bounds used to determine the new random state.
```python
>>> import gymnasium as gym
>>> env = gym.make("CartPole-v1", render_mode="rgb_array")
>>> env
<TimeLimit<OrderEnforcing<PassiveEnvChecker<CartPoleEnv<CartPole-v1>>>>>
>>> env.reset(seed=123, options={"low": -0.1, "high": 0.1}) # default low=-0.05, high=0.05
(array([ 0.03647037, -0.0892358 , -0.05592803, -0.06312564], dtype=float32), {})
```
| Parameter | Type | Default | Description |
|-------------------------|------------|-------------------------|-----------------------------------------------------------------------------------------------|
| `sutton_barto_reward` | **bool** | `False` | If `True` the reward function matches the original sutton barto implementation |
## Vectorized environment
To increase steps per seconds, users can use a custom vector environment or with an environment vectorizor.
```python
>>> import gymnasium as gym
>>> envs = gym.make_vec("CartPole-v1", num_envs=3, vectorization_mode="vector_entry_point")
>>> envs
CartPoleVectorEnv(CartPole-v1, num_envs=3)
>>> envs = gym.make_vec("CartPole-v1", num_envs=3, vectorization_mode="sync")
>>> envs
SyncVectorEnv(CartPole-v1, num_envs=3)
```
## Version History
* v1: `max_time_steps` raised to 500.
- In Gymnasium `1.0.0a2` the `sutton_barto_reward` argument was added (related [GitHub issue](https://github.com/Farama-Foundation/Gymnasium/issues/790))
* v0: Initial versions release.
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 50,
}
def __init__(
self, sutton_barto_reward: bool = False, render_mode: Optional[str] = None
):
self._sutton_barto_reward = sutton_barto_reward
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = self.masspole + self.masscart
self.length = 0.5 # actually half the pole's length
self.polemass_length = self.masspole * self.length
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
self.kinematics_integrator = "euler"
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation
# is still within bounds.
high = np.array(
[
self.x_threshold * 2,
np.inf,
self.theta_threshold_radians * 2,
np.inf,
],
dtype=np.float32,
)
self.action_space = spaces.Discrete(2)
self.observation_space = spaces.Box(-high, high, dtype=np.float32)
self.render_mode = render_mode
self.screen_width = 600
self.screen_height = 400
self.screen = None
self.clock = None
self.isopen = True
self.state: np.ndarray | None = None
self.steps_beyond_terminated = None
def step(self, action):
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid"
assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state
force = self.force_mag if action == 1 else -self.force_mag
costheta = np.cos(theta)
sintheta = np.sin(theta)
# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (
force + self.polemass_length * np.square(theta_dot) * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length
* (4.0 / 3.0 - self.masspole * np.square(costheta) / self.total_mass)
)
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == "euler":
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = np.array((x, x_dot, theta, theta_dot), dtype=np.float64)
terminated = bool(
x < -self.x_threshold
or x > self.x_threshold
or theta < -self.theta_threshold_radians
or theta > self.theta_threshold_radians
)
if not terminated:
reward = 0.0 if self._sutton_barto_reward else 1.0
elif self.steps_beyond_terminated is None:
# Pole just fell!
self.steps_beyond_terminated = 0
reward = -1.0 if self._sutton_barto_reward else 1.0
else:
if self.steps_beyond_terminated == 0:
logger.warn(
"You are calling 'step()' even though this environment has already returned terminated = True. "
"You should always call 'reset()' once you receive 'terminated = True' -- any further steps are undefined behavior."
)
self.steps_beyond_terminated += 1
reward = -1.0 if self._sutton_barto_reward else 0.0
if self.render_mode == "human":
self.render()
# truncation=False as the time limit is handled by the `TimeLimit` wrapper added during `make`
return np.array(self.state, dtype=np.float32), reward, terminated, False, {}
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
low, high = utils.maybe_parse_reset_bounds(
options, -0.05, 0.05 # default low
) # default high
self.state = self.np_random.uniform(low=low, high=high, size=(4,))
self.steps_beyond_terminated = None
if self.render_mode == "human":
self.render()
return np.array(self.state, dtype=np.float32), {}
def render(self):
if self.render_mode is None:
assert self.spec is not None
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym.make("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError as e:
raise DependencyNotInstalled(
'pygame is not installed, run `pip install "gymnasium[classic-control]"`'
) from e
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_width, self.screen_height)
)
else: # mode == "rgb_array"
self.screen = pygame.Surface((self.screen_width, self.screen_height))
if self.clock is None:
self.clock = pygame.time.Clock()
world_width = self.x_threshold * 2
scale = self.screen_width / world_width
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0
if self.state is None:
return None
x = self.state
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cartx = x[0] * scale + self.screen_width / 2.0 # MIDDLE OF CART
carty = 100 # TOP OF CART
cart_coords = [(l, b), (l, t), (r, t), (r, b)]
cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords]
gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0))
l, r, t, b = (
-polewidth / 2,
polewidth / 2,
polelen - polewidth / 2,
-polewidth / 2,
)
pole_coords = []
for coord in [(l, b), (l, t), (r, t), (r, b)]:
coord = pygame.math.Vector2(coord).rotate_rad(-x[2])
coord = (coord[0] + cartx, coord[1] + carty + axleoffset)
pole_coords.append(coord)
gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.aacircle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.filled_circle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.hline(self.surf, 0, self.screen_width, carty, (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
class CartPoleVectorEnv(VectorEnv):
metadata = {
"render_modes": ["rgb_array"],
"render_fps": 50,
"autoreset_mode": AutoresetMode.NEXT_STEP,
}
def __init__(
self,
num_envs: int = 1,
max_episode_steps: int = 500,
render_mode: Optional[str] = None,
sutton_barto_reward: bool = False,
):
self._sutton_barto_reward = sutton_barto_reward
self.num_envs = num_envs
self.max_episode_steps = max_episode_steps
self.render_mode = render_mode
self.gravity = 9.8
self.masscart = 1.0
self.masspole = 0.1
self.total_mass = self.masspole + self.masscart
self.length = 0.5 # actually half the pole's length
self.polemass_length = self.masspole * self.length
self.force_mag = 10.0
self.tau = 0.02 # seconds between state updates
self.kinematics_integrator = "euler"
self.state = None
self.steps = np.zeros(num_envs, dtype=np.int32)
self.prev_done = np.zeros(num_envs, dtype=np.bool_)
# Angle at which to fail the episode
self.theta_threshold_radians = 12 * 2 * math.pi / 360
self.x_threshold = 2.4
# Angle limit set to 2 * theta_threshold_radians so failing observation
# is still within bounds.
high = np.array(
[
self.x_threshold * 2,
np.inf,
self.theta_threshold_radians * 2,
np.inf,
],
dtype=np.float32,
)
self.low = -0.05
self.high = 0.05
self.single_action_space = spaces.Discrete(2)
self.action_space = batch_space(self.single_action_space, num_envs)
self.single_observation_space = spaces.Box(-high, high, dtype=np.float32)
self.observation_space = batch_space(self.single_observation_space, num_envs)
self.screen_width = 600
self.screen_height = 400
self.screens = None
self.surf = None
self.steps_beyond_terminated = None
def step(
self, action: np.ndarray
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, dict]:
assert self.action_space.contains(
action
), f"{action!r} ({type(action)}) invalid"
assert self.state is not None, "Call reset before using step method."
x, x_dot, theta, theta_dot = self.state
force = np.sign(action - 0.5) * self.force_mag
costheta = np.cos(theta)
sintheta = np.sin(theta)
# For the interested reader:
# https://coneural.org/florian/papers/05_cart_pole.pdf
temp = (
force + self.polemass_length * np.square(theta_dot) * sintheta
) / self.total_mass
thetaacc = (self.gravity * sintheta - costheta * temp) / (
self.length
* (4.0 / 3.0 - self.masspole * np.square(costheta) / self.total_mass)
)
xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass
if self.kinematics_integrator == "euler":
x = x + self.tau * x_dot
x_dot = x_dot + self.tau * xacc
theta = theta + self.tau * theta_dot
theta_dot = theta_dot + self.tau * thetaacc
else: # semi-implicit euler
x_dot = x_dot + self.tau * xacc
x = x + self.tau * x_dot
theta_dot = theta_dot + self.tau * thetaacc
theta = theta + self.tau * theta_dot
self.state = np.stack((x, x_dot, theta, theta_dot))
terminated: np.ndarray = (
(x < -self.x_threshold)
| (x > self.x_threshold)
| (theta < -self.theta_threshold_radians)
| (theta > self.theta_threshold_radians)
)
self.steps += 1
truncated = self.steps >= self.max_episode_steps
if self._sutton_barto_reward:
reward = -np.array(terminated, dtype=np.float32)
else:
reward = np.ones_like(terminated, dtype=np.float32)
# Reset all environments which terminated or were truncated in the last step
self.state[:, self.prev_done] = self.np_random.uniform(
low=self.low, high=self.high, size=(4, self.prev_done.sum())
)
self.steps[self.prev_done] = 0
reward[self.prev_done] = 0.0
terminated[self.prev_done] = False
truncated[self.prev_done] = False
self.prev_done = np.logical_or(terminated, truncated)
return self.state.T.astype(np.float32), reward, terminated, truncated, {}
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
# -0.05 and 0.05 is the default low and high bounds
self.low, self.high = utils.maybe_parse_reset_bounds(options, -0.05, 0.05)
self.state = self.np_random.uniform(
low=self.low, high=self.high, size=(4, self.num_envs)
)
self.steps_beyond_terminated = None
self.steps = np.zeros(self.num_envs, dtype=np.int32)
self.prev_done = np.zeros(self.num_envs, dtype=np.bool_)
return self.state.T.astype(np.float32), {}
def render(self):
if self.render_mode is None:
assert self.spec is not None
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym.make_vec("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
'pygame is not installed, run `pip install "gymnasium[classic_control]"`'
)
if self.screens is None:
pygame.init()
self.screens = [
pygame.Surface((self.screen_width, self.screen_height))
for _ in range(self.num_envs)
]
world_width = self.x_threshold * 2
scale = self.screen_width / world_width
polewidth = 10.0
polelen = scale * (2 * self.length)
cartwidth = 50.0
cartheight = 30.0
if self.state is None:
raise ValueError(
"Cartpole's state is None, it probably hasn't be reset yet."
)
for x, screen in zip(self.state.T, self.screens):
assert isinstance(x, np.ndarray) and x.shape == (4,)
self.surf = pygame.Surface((self.screen_width, self.screen_height))
self.surf.fill((255, 255, 255))
l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2
axleoffset = cartheight / 4.0
cartx = x[0] * scale + self.screen_width / 2.0 # MIDDLE OF CART
carty = 100 # TOP OF CART
cart_coords = [(l, b), (l, t), (r, t), (r, b)]
cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords]
gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0))
gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0))
l, r, t, b = (
-polewidth / 2,
polewidth / 2,
polelen - polewidth / 2,
-polewidth / 2,
)
pole_coords = []
for coord in [(l, b), (l, t), (r, t), (r, b)]:
coord = pygame.math.Vector2(coord).rotate_rad(-x[2])
coord = (coord[0] + cartx, coord[1] + carty + axleoffset)
pole_coords.append(coord)
gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101))
gfxdraw.aacircle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.filled_circle(
self.surf,
int(cartx),
int(carty + axleoffset),
int(polewidth / 2),
(129, 132, 203),
)
gfxdraw.hline(self.surf, 0, self.screen_width, carty, (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
screen.blit(self.surf, (0, 0))
return [
np.transpose(np.array(pygame.surfarray.pixels3d(screen)), axes=(1, 0, 2))
for screen in self.screens
]
def close(self):
if self.screens is not None:
import pygame
pygame.quit()