-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbuilder.rs
659 lines (584 loc) · 23.2 KB
/
builder.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//! Tools to make it easier to build an LRS
//! It also avoids the need to manipulate flatbuffer data
use std::collections::HashMap;
use std::path::{Path, PathBuf};
use flatbuffers::{ForwardsUOffset, Vector, WIPOffset};
use geo::{Coord, Distance};
use crate::curves::{Curve, CurveError, CurveProjection, SphericalLineStringCurve};
use crate::lrs_ext::ExtLrs;
use crate::lrs_generated::{self, *};
use crate::osm_helpers::sort_edges;
/// A key-value `HashMap` to add metadata to the objects.
pub type Properties = std::collections::HashMap<String, String>;
#[macro_export]
/// Build a properties map:
/// `properties!("source" => "openstreetmap", "license" => "ODbL")`.
macro_rules! properties {
($($k:expr => $v:expr),* $(,)?) => {{
core::convert::From::from([$(($k.to_owned(), $v.to_owned()),)*])
}};
}
/// The linear position of an [`Anchor`] doesn’t always match the measured distance.
/// For example if a road was transformed into a bypass, resulting in a longer road,
/// but measurements are kept the same.
/// The start of the [`Curve`] might also be different from the `0` of the LRM.
#[derive(Clone, Copy, Debug)]
pub struct AnchorOnLrm {
/// Index of the considered [`Anchor`]. Use the value returned by [`Builder::add_anchor`].
pub anchor_index: usize,
/// The distance from the start of the LRM.
/// It can be different from the measured distance.
pub distance_along_lrm: f64,
}
#[derive(Copy, Clone)]
/// A [`Traversal`] is composed by many [`Segment`]s.
pub struct SegmentOfTraversal {
/// Index of the considered [`Segment`]. Use the value returned by [`Builder::add_segment`]
pub segment_index: usize,
/// When integrating the [`Segment`] in the [`Traversal`], if we should consider the coordinates in reverse order.
pub reversed: bool,
}
impl From<SegmentOfTraversal> for lrs_generated::SegmentOfTraversal {
fn from(val: SegmentOfTraversal) -> Self {
lrs_generated::SegmentOfTraversal::new(
val.segment_index as u64,
match val.reversed {
true => Direction::Decreasing,
false => Direction::Increasing,
},
)
}
}
enum AnchorPosition {
Geographical(Coord),
Curve(f64),
}
struct TempSegment {
id: String,
geometry: Vec<Coord>,
start_node_index: u64,
end_node_index: u64,
}
struct TempTraversal {
id: String,
curve: SphericalLineStringCurve,
segments: Vec<SegmentOfTraversal>,
}
impl TempTraversal {
fn reverse(&mut self) {
self.curve.reverse();
self.segments.reverse();
for segment_of_traversal in &mut self.segments {
segment_of_traversal.reversed = !segment_of_traversal.reversed;
}
}
}
/// Helper structure to help building an LRS file.
/// It holds all the temporary structures and is called to append more data.
#[derive(Default)]
pub struct Builder<'fbb> {
fbb: flatbuffers::FlatBufferBuilder<'fbb>,
// Temporary geometry of [`Segment`]s, we use them to project [`Anchor`]s.
temp_segments: Vec<TempSegment>,
// Temporary geometry of [`Traversal`]' with [`Curve`] and list of [`Segment`], we use them to project [`Anchor`]s and compute length.
temp_traversal: Vec<TempTraversal>,
// Temporary [`Anchor`]s because we need to project them on the [`Traversal`] of each LRM they belong to.
temp_anchors: Vec<AnchorPosition>,
// Position of every node
nodes_coords: Vec<Coord>,
// Every node of a given traversal
nodes_of_traversal: Vec<Vec<usize>>,
// Final objects that will be in the binary file.
nodes: Vec<WIPOffset<Node<'fbb>>>,
anchors: Vec<WIPOffset<Anchor<'fbb>>>,
lrms: Vec<WIPOffset<LinearReferencingMethod<'fbb>>>,
}
impl<'fbb> Builder<'fbb> {
/// Private helper function to transform an `HashMap` into a flatbuffer vector of `Property`
fn build_properties(
&mut self,
properties: Properties,
) -> Option<WIPOffset<Vector<'fbb, ForwardsUOffset<Property<'fbb>>>>> {
let properties_vec: Vec<_> = properties
.iter()
.map(|(k, v)| {
let key = Some(self.fbb.create_string(k));
let value = Some(self.fbb.create_string(v));
Property::create(&mut self.fbb, &PropertyArgs { key, value })
})
.collect();
Some(self.fbb.create_vector(&properties_vec))
}
/// Create a new [`Builder`] (default `size = 1024`).
pub fn new() -> Self {
Self {
fbb: flatbuffers::FlatBufferBuilder::with_capacity(1024),
..Default::default()
}
}
/// Gives the indexes of all the nodes of a traversal
pub fn get_nodes_of_traversal(&self, traversal_idx: usize) -> &[usize] {
&self.nodes_of_traversal[traversal_idx]
}
/// Add a new [`Node`].
pub fn add_node(&mut self, id: &str, coord: Coord, properties: Properties) -> usize {
let point = Point::new(coord.x, coord.y);
let args = NodeArgs {
id: Some(self.fbb.create_string(id)),
geometry: Some(&point),
properties: self.build_properties(properties),
};
self.nodes_coords.push(coord);
self.nodes.push(Node::create(&mut self.fbb, &args));
self.nodes.len() - 1
}
/// Add a new [`Anchor`] based on the coordinates.
pub fn add_anchor(
&mut self,
id: &str,
name: Option<&str>,
coord: Coord,
properties: Properties,
) -> usize {
let properties = self.build_properties(properties);
let geometry = Point::new(coord.x, coord.y);
let anchor_arg = AnchorArgs {
id: Some(self.fbb.create_string(id)),
name: name.map(|n| self.fbb.create_string(n)),
geometry: Some(&geometry),
properties,
..Default::default()
};
self.anchors
.push(Anchor::create(&mut self.fbb, &anchor_arg));
self.temp_anchors.push(AnchorPosition::Geographical(coord));
self.temp_anchors.len() - 1
}
/// A new [`Anchor`] based on its position along the curve.
pub fn add_projected_anchor(
&mut self,
id: &str,
name: Option<&str>,
position_on_curve: f64,
properties: Properties,
) -> usize {
let properties = self.build_properties(properties);
let anchor_arg = AnchorArgs {
id: Some(self.fbb.create_string(id)),
name: name.map(|n| self.fbb.create_string(n)),
properties,
..Default::default()
};
self.anchors
.push(Anchor::create(&mut self.fbb, &anchor_arg));
self.temp_anchors
.push(AnchorPosition::Curve(position_on_curve));
self.temp_anchors.len() - 1
}
/// Add a new [`Segment`].
pub fn add_segment(
&mut self,
id: &str,
geometry: &[Coord],
start_node_index: usize,
end_node_index: usize,
) -> usize {
self.temp_segments.push(TempSegment {
id: id.to_owned(),
geometry: geometry.to_vec(),
start_node_index: start_node_index as u64,
end_node_index: end_node_index as u64,
});
self.temp_segments.len() - 1
}
/// Add a new [`Traversal`], created from the [`Segment`]s provided through `Builder::add_segment`.
/// The existing [`Segment`]s are consumed and will not be accessible anymore.
pub fn add_traversal(&mut self, traversal_id: &str, segments: &[SegmentOfTraversal]) -> usize {
let mut coords = vec![];
let mut nodes_of_traversal = vec![];
for segment in segments {
let start_node = self.temp_segments[segment.segment_index].start_node_index as usize;
let end_node = self.temp_segments[segment.segment_index].end_node_index as usize;
if segment.reversed {
if nodes_of_traversal.is_empty() {
nodes_of_traversal.push(end_node);
}
nodes_of_traversal.push(start_node);
for &coord in self.temp_segments[segment.segment_index]
.geometry
.iter()
.rev()
{
coords.push(coord);
}
} else {
if nodes_of_traversal.is_empty() {
nodes_of_traversal.push(start_node);
}
nodes_of_traversal.push(end_node);
for &coord in self.temp_segments[segment.segment_index].geometry.iter() {
coords.push(coord)
}
}
}
self.temp_traversal.push(TempTraversal {
id: traversal_id.to_owned(),
curve: SphericalLineStringCurve::new(geo::LineString::new(coords), 100.),
segments: segments.to_vec(),
});
self.nodes_of_traversal.push(nodes_of_traversal);
self.temp_traversal.len() - 1
}
/// Create a linear referencing method where the distance is provided.
/// The [`Anchor`]s will be projected on the [`Curve`].
pub fn add_lrm(
&mut self,
id: &str,
traversal_index: usize,
anchors: &[AnchorOnLrm],
properties: Properties,
) {
let id = Some(self.fbb.create_string(id));
let properties = self.build_properties(properties);
let mut anchors = anchors.to_vec();
anchors.sort_by_key(|anchor| (anchor.distance_along_lrm * 10e6) as i64);
let anchor_indices = anchors.iter().map(|a| a.anchor_index as u64);
let distances = anchors.iter().map(|a| a.distance_along_lrm);
let args = LinearReferencingMethodArgs {
id,
properties,
traversal_index: traversal_index as u32,
anchor_indices: Some(self.fbb.create_vector_from_iter(anchor_indices)),
distances: Some(self.fbb.create_vector_from_iter(distances)),
projected_anchors: Some(self.project_anchors(&anchors, traversal_index)),
..Default::default()
};
self.lrms
.push(LinearReferencingMethod::create(&mut self.fbb, &args));
}
/// Private helper that projects [`Anchor`]s onto a [`Curve`].
fn project_anchors(
&mut self,
anchors: &[AnchorOnLrm],
traversal_idx: usize,
) -> WIPOffset<Vector<'fbb, ForwardsUOffset<lrs_generated::ProjectedAnchor<'fbb>>>> {
let curve = &self.temp_traversal[traversal_idx].curve;
let projected_anchors: Vec<_> = anchors
.iter()
.map(|anchor| match self.temp_anchors[anchor.anchor_index] {
AnchorPosition::Curve(distance_along_curve) => (None, distance_along_curve),
AnchorPosition::Geographical(coord) => {
let projected = curve
.project(coord.into())
.expect("could not projets anchor");
let geometry = lrs_generated::Point::new(
projected.projected_coords.x(),
projected.projected_coords.y(),
);
(Some(geometry), projected.distance_along_curve)
}
})
.map(|(geom, distance_along_curve)| {
ProjectedAnchor::create(
&mut self.fbb,
&ProjectedAnchorArgs {
geometry: geom.as_ref(),
distance_along_curve,
},
)
})
.collect();
self.fbb.create_vector(&projected_anchors)
}
/// Save the flatbuffer to the given file.
pub fn save<P: AsRef<Path>>(&mut self, out_file: &P, properties: Properties) {
std::fs::write(out_file, self.build_data(properties)).unwrap();
}
/// Private function that builds the segments data for serialization
fn build_segments(&mut self) -> Vec<WIPOffset<Segment<'fbb>>> {
let segments: Vec<_> = self
.temp_segments
.iter()
.map(|segment| {
let points_iter = segment.geometry.iter().map(|c| Point::new(c.x, c.y));
(
self.fbb.create_string(&segment.id),
self.fbb.create_vector_from_iter(points_iter),
segment.start_node_index,
segment.end_node_index,
)
})
.collect();
segments
.into_iter()
.map(|(id, points, start_node_index, end_node_index)| {
Segment::create(
&mut self.fbb,
&SegmentArgs {
id: Some(id),
properties: None,
geometry: Some(points),
start_node_index,
end_node_index,
},
)
})
.collect()
}
/// Private function that builds the traversal data for serialization
fn build_traversals(&mut self) -> Vec<WIPOffset<Traversal<'fbb>>> {
self.temp_traversal
.iter()
.map(|traversal| {
let segments_of_traversal = self.fbb.create_vector_from_iter(
traversal
.segments
.iter()
.map(|s| Into::<lrs_generated::SegmentOfTraversal>::into(*s)),
);
let args = TraversalArgs {
id: Some(self.fbb.create_string(&traversal.id)),
segments: Some(segments_of_traversal),
properties: None,
};
Traversal::create(&mut self.fbb, &args)
})
.collect()
}
/// Return the binary data.
pub fn build_data(&mut self, properties: Properties) -> &[u8] {
let segments = self.build_segments();
let traversals = self.build_traversals();
let lrs_args = LrsArgs {
properties: self.build_properties(properties),
nodes: Some(self.fbb.create_vector(&self.nodes)),
segments: Some(self.fbb.create_vector(&segments)),
traversals: Some(self.fbb.create_vector(&traversals)),
anchors: Some(self.fbb.create_vector(&self.anchors)),
linear_referencing_methods: Some(self.fbb.create_vector(&self.lrms)),
geometry_type: GeometryType::Geographic,
};
let lrs = Lrs::create(&mut self.fbb, &lrs_args);
self.fbb.finish(lrs, None);
self.fbb.finished_data()
}
/// Builds the LRS from the data.
pub fn build_lrs(&mut self, properties: Properties) -> Result<ExtLrs, String> {
ExtLrs::load(self.build_data(properties))
}
/// Return the mapping between a traversal id and its index in the builder.
pub fn get_traversal_indexes(&self) -> HashMap<String, usize> {
self.temp_traversal
.iter()
.enumerate()
.map(|(idx, traversal)| (traversal.id.to_owned(), idx))
.collect()
}
/// Read the topology from an OpenStreetMap source.
/// It will read incoming [`Node`]s and [`Segment`]s to create the [`Traversal`]s.
pub fn read_from_osm(
&mut self,
input_file: &PathBuf,
lrm_tag: &str,
required: Vec<(String, String)>,
to_reject: Vec<(String, String)>,
) {
let mut reader = osm4routing::Reader::new().merge_ways().read_tag(lrm_tag);
for (key, value) in required.iter() {
reader = reader.require(key, value)
}
for (key, value) in to_reject.iter() {
reader = reader.reject(key, value)
}
let (nodes, edges) = reader
.read(input_file)
.expect("could not read the osm file");
let mut edges_map = HashMap::<_, _>::new();
let mut traversals = HashMap::<String, Vec<_>>::new();
let nodes_index: HashMap<_, _> = nodes
.iter()
.map(|n| {
(
n.id,
self.add_node(&n.id.0.to_string(), n.coord, properties!()),
)
})
.collect();
for edge in edges.iter() {
if let Some(srv_ref) = edge.tags.get(lrm_tag) {
traversals
.entry(srv_ref.clone())
.or_default()
.push(edge.clone());
let start_node_idx = nodes_index[&edge.source];
let end_node_idx = nodes_index[&edge.target];
let idx = self.add_segment(&edge.id, &edge.geometry, start_node_idx, end_node_idx);
edges_map.insert(edge.id.clone(), idx);
}
}
// Sort the traversals
for (srv_ref, edges) in traversals.into_iter() {
let segments: Vec<_> = sort_edges(edges, &srv_ref)
.into_iter()
.map(|(edge, reversed)| SegmentOfTraversal {
segment_index: edges_map[&edge.id],
reversed,
})
.collect();
self.add_traversal(&srv_ref, &segments);
}
}
/// Gives the euclidean distance between two traversals
/// While working on spherical coordinates, this usually doesn’t make much sense,
/// this is good enough to sort curves by distance
pub fn euclidean_distance(&self, lrm_index_a: usize, lrm_index_b: usize) -> f64 {
let a = &self.temp_traversal[lrm_index_a].curve.geom;
let b = &self.temp_traversal[lrm_index_b].curve.geom;
geo::Euclidean::distance(a, b)
}
/// Returns the position along the curve of the traversal
/// The value will be between 0.0 and 1.0, both included
pub fn project(
&self,
lrm_index: usize,
point: geo::Point,
) -> Result<CurveProjection, CurveError> {
self.temp_traversal[lrm_index].curve.project(point)
}
/// Reverses the direction of the traversal
pub fn reverse(&mut self, lrm_index: usize) {
self.temp_traversal[lrm_index].reverse();
self.nodes_of_traversal[lrm_index].reverse();
}
/// Returns the coordinates of a node
pub fn get_node_coord(&self, node_index: usize) -> Coord {
self.nodes_coords[node_index]
}
/// Orient the traversal according to two points
///
/// In the end, the first coordinate must be closer to the beginning than the second
/// If both points are so far from the curve that they are projected to a end, we consider the offset to the curve
pub fn orient_along_points(
&mut self,
traversal_index: usize,
first_point: geo::Point,
last_point: geo::Point,
) -> Result<(), CurveError> {
let first_projected = self.project(traversal_index, first_point)?;
let last_projected = self.project(traversal_index, last_point)?;
if (first_projected.distance_along_curve > last_projected.distance_along_curve)
|| (first_projected.distance_along_curve == last_projected.distance_along_curve
&& first_projected.offset.abs() > last_projected.offset.abs())
{
self.reverse(traversal_index);
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::lrm_scale::LrmScaleMeasure;
use super::*;
use approx::assert_relative_eq;
use geo::{coord, point};
fn build_traversal(builder: &mut Builder) -> usize {
let s1 = builder.add_segment("s1", &[coord! {x: 0., y: 0.}, coord! {x:1., y: 0.}], 0, 1);
let s2 = builder.add_segment("s2", &[coord! {x: 1., y: 0.}, coord! {x:2., y: 0.}], 1, 2);
let sot1 = super::SegmentOfTraversal {
segment_index: s1,
reversed: false,
};
let sot2 = super::SegmentOfTraversal {
segment_index: s2,
reversed: false,
};
builder.add_traversal("traversal", &[sot1, sot2])
}
#[test]
fn traversal_nodes_order() {
// Nominal case
let mut b = Builder::new();
let traversal = build_traversal(&mut b);
assert_eq!(b.nodes_of_traversal[traversal], [0, 1, 2]);
// One reversed edge
let s1 = b.add_segment("s1", &[coord! {x: 0., y: 0.}, coord! {x:1., y: 0.}], 10, 11);
let s2 = b.add_segment("s2", &[coord! {x: 1., y: 0.}, coord! {x:2., y: 0.}], 10, 12);
let sot1 = super::SegmentOfTraversal {
segment_index: s1,
reversed: true,
};
let sot2 = super::SegmentOfTraversal {
segment_index: s2,
reversed: false,
};
let traversal = b.add_traversal("traversal", &[sot1, sot2]);
assert_eq!(b.nodes_of_traversal[traversal], [11, 10, 12]);
}
#[test]
fn orientation_on_curve() {
let mut b = Builder::new();
let traversal = build_traversal(&mut b);
let point_a = point! {x: 1., y: 1.};
let point_b = point! {x: 2., y: -1.};
b.orient_along_points(traversal, point_a, point_b).unwrap();
assert_eq!(b.temp_traversal[traversal].segments[0].segment_index, 0);
assert_eq!(b.nodes_of_traversal[0][0], 0);
b.orient_along_points(traversal, point_b, point_a).unwrap();
assert_eq!(b.temp_traversal[0].segments[0].segment_index, 1);
assert_eq!(b.nodes_of_traversal[0][0], 2);
}
#[test]
fn orientation_before_curve() {
let mut b = Builder::new();
let traversal = build_traversal(&mut b);
// a-b---[the curve]
let point_a = point! {x: -1., y: 0.};
let point_b = point! {x: -2., y: 0.};
b.orient_along_points(traversal, point_a, point_b).unwrap();
assert_eq!(b.temp_traversal[traversal].segments[0].segment_index, 0);
b.orient_along_points(traversal, point_b, point_a).unwrap();
assert_eq!(b.temp_traversal[traversal].segments[0].segment_index, 1);
}
#[test]
fn orientation_after_curve() {
let mut b = Builder::new();
let traversal = build_traversal(&mut b);
// [the curve]---a-b
let point_a = point! {x: 5., y: 0.};
let point_b = point! {x: 7., y: 0.};
b.orient_along_points(traversal, point_a, point_b).unwrap();
assert_eq!(b.temp_traversal[traversal].segments[0].segment_index, 0);
b.orient_along_points(traversal, point_b, point_a).unwrap();
assert_eq!(b.temp_traversal[traversal].segments[0].segment_index, 1);
}
#[test]
fn convert_to_lrs() {
let mut b = Builder::new();
let traversal = build_traversal(&mut b);
let anchor_index =
b.add_anchor("bridge", Some("bridge"), coord! {x:0., y:0.}, properties!());
let anchor_2_index =
b.add_anchor("foo", Some("bridge"), coord! {x:0.5, y:0.}, properties!());
let aol = AnchorOnLrm {
anchor_index,
distance_along_lrm: 1000.,
};
let aol2 = AnchorOnLrm {
anchor_index: anchor_2_index,
distance_along_lrm: 2000.,
};
b.add_lrm("lrm", traversal, &[aol, aol2], properties!());
let lrs = b.build_lrs(properties!()).unwrap();
let lrm = lrs
.resolve(
0,
&LrmScaleMeasure {
anchor_name: "bridge".to_owned(),
scale_offset: 0.,
},
)
.unwrap();
assert_relative_eq!(lrm.x(), 0.);
assert_relative_eq!(lrm.y(), 0.);
}
}