-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy patharray.rs
1505 lines (1391 loc) · 47.9 KB
/
array.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Safe interface for NumPy's [N-dimensional arrays][ndarray]
//!
//! [ndarray]: https://numpy.org/doc/stable/reference/arrays.ndarray.html
use std::{
marker::PhantomData,
mem,
ops::Deref,
os::raw::{c_int, c_void},
ptr, slice,
};
use ndarray::{
Array, ArrayBase, ArrayView, ArrayViewMut, Axis, Data, Dim, Dimension, IntoDimension, Ix0, Ix1,
Ix2, Ix3, Ix4, Ix5, Ix6, IxDyn, RawArrayView, RawArrayViewMut, RawData, ShapeBuilder,
StrideShape,
};
use num_traits::AsPrimitive;
use pyo3::{
ffi, pyobject_native_type_base, types::PyModule, AsPyPointer, FromPyObject, IntoPy, Py, PyAny,
PyClassInitializer, PyDowncastError, PyErr, PyNativeType, PyObject, PyResult, PyTypeInfo,
Python, ToPyObject,
};
use crate::borrow::{PyReadonlyArray, PyReadwriteArray};
use crate::cold;
use crate::convert::{ArrayExt, IntoPyArray, NpyIndex, ToNpyDims, ToPyArray};
use crate::dtype::Element;
use crate::error::{
BorrowError, DimensionalityError, FromVecError, IgnoreError, NotContiguousError, TypeError,
DIMENSIONALITY_MISMATCH_ERR, MAX_DIMENSIONALITY_ERR,
};
use crate::npyffi::{self, npy_intp, NPY_ORDER, PY_ARRAY_API};
use crate::slice_container::PySliceContainer;
use crate::untyped_array::PyUntypedArray;
/// A safe, statically-typed wrapper for NumPy's [`ndarray`][ndarray] class.
///
/// # Memory location
///
/// - Allocated by Rust: Constructed via [`IntoPyArray`] or
/// [`from_vec`][Self::from_vec] or [`from_owned_array`][Self::from_owned_array].
///
/// These methods transfers ownership of the Rust allocation into a suitable Python object
/// and uses the memory as the internal buffer backing the NumPy array.
///
/// Please note that some destructive methods like [`resize`][Self::resize] will fail
/// when used with this kind of array as NumPy cannot reallocate the internal buffer.
///
/// - Allocated by NumPy: Constructed via other methods, like [`ToPyArray`] or
/// [`from_slice`][Self::from_slice] or [`from_array`][Self::from_array].
///
/// These methods allocate memory in Python's private heap via NumPy's API.
///
/// In both cases, `PyArray` is managed by Python so it can neither be moved from
/// nor deallocated manually.
///
/// # References
///
/// Like [`new`][Self::new], all constructor methods of `PyArray` return a shared reference `&PyArray`
/// instead of an owned value. This design follows [PyO3's ownership concept][pyo3-memory],
/// i.e. the return value is GIL-bound owning reference into Python's heap.
///
/// # Element type and dimensionality
///
/// `PyArray` has two type parametes `T` and `D`.
/// `T` represents the type of its elements, e.g. [`f32`] or [`PyObject`].
/// `D` represents its dimensionality, e.g [`Ix2`][type@Ix2] or [`IxDyn`][type@IxDyn].
///
/// Element types are Rust types which implement the [`Element`] trait.
/// Dimensions are represented by the [`ndarray::Dimension`] trait.
///
/// Typically, `Ix1, Ix2, ...` are used for fixed dimensionality arrays,
/// and `IxDyn` is used for dynamic dimensionality arrays. Type aliases
/// for combining `PyArray` with these types are provided, e.g. [`PyArray1`] or [`PyArrayDyn`].
///
/// To specify concrete dimension like `3×4×5`, types which implement the [`ndarray::IntoDimension`]
/// trait are used. Typically, this means arrays like `[3, 4, 5]` or tuples like `(3, 4, 5)`.
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use ndarray::{array, Array};
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0., 4., 1.).reshape([2, 2]).unwrap();
/// let array = array![[3., 4.], [5., 6.]];
///
/// assert_eq!(
/// array.dot(&pyarray.readonly().as_array()),
/// array![[8., 15.], [12., 23.]]
/// );
/// });
/// ```
///
/// [ndarray]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
/// [pyo3-memory]: https://pyo3.rs/main/memory.html
#[repr(transparent)]
pub struct PyArray<T, D>(PyAny, PhantomData<T>, PhantomData<D>);
/// Zero-dimensional array.
pub type PyArray0<T> = PyArray<T, Ix0>;
/// One-dimensional array.
pub type PyArray1<T> = PyArray<T, Ix1>;
/// Two-dimensional array.
pub type PyArray2<T> = PyArray<T, Ix2>;
/// Three-dimensional array.
pub type PyArray3<T> = PyArray<T, Ix3>;
/// Four-dimensional array.
pub type PyArray4<T> = PyArray<T, Ix4>;
/// Five-dimensional array.
pub type PyArray5<T> = PyArray<T, Ix5>;
/// Six-dimensional array.
pub type PyArray6<T> = PyArray<T, Ix6>;
/// Dynamic-dimensional array.
pub type PyArrayDyn<T> = PyArray<T, IxDyn>;
/// Returns a handle to NumPy's multiarray module.
pub fn get_array_module(py: Python<'_>) -> PyResult<&PyModule> {
PyModule::import(py, npyffi::array::MOD_NAME)
}
unsafe impl<T: Element, D: Dimension> PyTypeInfo for PyArray<T, D> {
type AsRefTarget = Self;
const NAME: &'static str = "PyArray<T, D>";
const MODULE: Option<&'static str> = Some("numpy");
fn type_object_raw(py: Python) -> *mut ffi::PyTypeObject {
unsafe { npyffi::PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type) }
}
fn is_type_of(ob: &PyAny) -> bool {
Self::extract::<IgnoreError>(ob).is_ok()
}
}
pyobject_native_type_base!(PyArray<T, D>; T; D);
impl<T, D> AsRef<PyAny> for PyArray<T, D> {
#[inline]
fn as_ref(&self) -> &PyAny {
&self.0
}
}
impl<T, D> Deref for PyArray<T, D> {
type Target = PyUntypedArray;
#[inline]
fn deref(&self) -> &Self::Target {
self.as_untyped()
}
}
impl<T, D> AsPyPointer for PyArray<T, D> {
#[inline]
fn as_ptr(&self) -> *mut ffi::PyObject {
self.0.as_ptr()
}
}
impl<T, D> IntoPy<Py<PyArray<T, D>>> for &'_ PyArray<T, D> {
#[inline]
fn into_py(self, py: Python<'_>) -> Py<PyArray<T, D>> {
unsafe { Py::from_borrowed_ptr(py, self.as_ptr()) }
}
}
impl<T, D> From<&'_ PyArray<T, D>> for Py<PyArray<T, D>> {
#[inline]
fn from(other: &PyArray<T, D>) -> Self {
unsafe { Py::from_borrowed_ptr(other.py(), other.as_ptr()) }
}
}
impl<'a, T, D> From<&'a PyArray<T, D>> for &'a PyAny {
fn from(ob: &'a PyArray<T, D>) -> Self {
unsafe { &*(ob as *const PyArray<T, D> as *const PyAny) }
}
}
impl<T, D> IntoPy<PyObject> for PyArray<T, D> {
fn into_py(self, py: Python<'_>) -> PyObject {
unsafe { PyObject::from_borrowed_ptr(py, self.as_ptr()) }
}
}
impl<'py, T: Element, D: Dimension> FromPyObject<'py> for &'py PyArray<T, D> {
fn extract(ob: &'py PyAny) -> PyResult<Self> {
PyArray::extract(ob)
}
}
impl<T, D> PyArray<T, D> {
/// Access an untyped representation of this array.
#[inline(always)]
pub fn as_untyped(&self) -> &PyUntypedArray {
unsafe { &*(self as *const Self as *const PyUntypedArray) }
}
/// Turn `&PyArray<T,D>` into `Py<PyArray<T,D>>`,
/// i.e. a pointer into Python's heap which is independent of the GIL lifetime.
///
/// This method can be used to avoid lifetime annotations of function arguments
/// or return values.
///
/// # Example
///
/// ```
/// use numpy::PyArray1;
/// use pyo3::{Py, Python};
///
/// let array: Py<PyArray1<f64>> = Python::with_gil(|py| {
/// PyArray1::zeros(py, 5, false).to_owned()
/// });
///
/// Python::with_gil(|py| {
/// assert_eq!(array.as_ref(py).readonly().as_slice().unwrap(), [0.0; 5]);
/// });
/// ```
pub fn to_owned(&self) -> Py<Self> {
unsafe { Py::from_borrowed_ptr(self.py(), self.as_ptr()) }
}
/// Constructs a reference to a `PyArray` from a raw pointer to a Python object.
///
/// # Safety
///
/// This is a wrapper around [`pyo3::FromPyPointer::from_owned_ptr_or_opt`] and inherits its safety contract.
pub unsafe fn from_owned_ptr<'py>(py: Python<'py>, ptr: *mut ffi::PyObject) -> &'py Self {
py.from_owned_ptr(ptr)
}
/// Constructs a reference to a `PyArray` from a raw point to a Python object.
///
/// # Safety
///
/// This is a wrapper around [`pyo3::FromPyPointer::from_borrowed_ptr_or_opt`] and inherits its safety contract.
pub unsafe fn from_borrowed_ptr<'py>(py: Python<'py>, ptr: *mut ffi::PyObject) -> &'py Self {
py.from_borrowed_ptr(ptr)
}
/// Returns a pointer to the first element of the array.
#[inline(always)]
pub fn data(&self) -> *mut T {
unsafe { (*self.as_array_ptr()).data as *mut _ }
}
}
impl<T: Element, D: Dimension> PyArray<T, D> {
fn extract<'py, E>(ob: &'py PyAny) -> Result<&'py Self, E>
where
E: From<PyDowncastError<'py>> + From<DimensionalityError> + From<TypeError<'py>>,
{
// Check if the object is an array.
let array = unsafe {
if npyffi::PyArray_Check(ob.py(), ob.as_ptr()) == 0 {
return Err(PyDowncastError::new(ob, Self::NAME).into());
}
&*(ob as *const PyAny as *const Self)
};
// Check if the dimensionality matches `D`.
let src_ndim = array.ndim();
if let Some(dst_ndim) = D::NDIM {
if src_ndim != dst_ndim {
return Err(DimensionalityError::new(src_ndim, dst_ndim).into());
}
}
// Check if the element type matches `T`.
let src_dtype = array.dtype();
let dst_dtype = T::get_dtype(ob.py());
if !src_dtype.is_equiv_to(dst_dtype) {
return Err(TypeError::new(src_dtype, dst_dtype).into());
}
Ok(array)
}
/// Same as [`shape`][PyUntypedArray::shape], but returns `D` instead of `&[usize]`.
#[inline(always)]
pub fn dims(&self) -> D {
D::from_dimension(&Dim(self.shape())).expect(DIMENSIONALITY_MISMATCH_ERR)
}
/// Creates a new uninitialized NumPy array.
///
/// If `is_fortran` is true, then it has Fortran/column-major order,
/// otherwise it has C/row-major order.
///
/// # Safety
///
/// The returned array will always be safe to be dropped as the elements must either
/// be trivially copyable (as indicated by `<T as Element>::IS_COPY`) or be pointers
/// into Python's heap, which NumPy will automatically zero-initialize.
///
/// However, the elements themselves will not be valid and should be initialized manually
/// using raw pointers obtained via [`uget_raw`][Self::uget_raw]. Before that, all methods
/// which produce references to the elements invoke undefined behaviour. In particular,
/// zero-initialized pointers are _not_ valid instances of `PyObject`.
///
/// # Example
///
/// ```
/// use numpy::PyArray3;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let arr = unsafe {
/// let arr = PyArray3::<i32>::new(py, [4, 5, 6], false);
///
/// for i in 0..4 {
/// for j in 0..5 {
/// for k in 0..6 {
/// arr.uget_raw([i, j, k]).write((i * j * k) as i32);
/// }
/// }
/// }
///
/// arr
/// };
///
/// assert_eq!(arr.shape(), &[4, 5, 6]);
/// });
/// ```
pub unsafe fn new<ID>(py: Python, dims: ID, is_fortran: bool) -> &Self
where
ID: IntoDimension<Dim = D>,
{
let flags = c_int::from(is_fortran);
Self::new_uninit(py, dims, ptr::null_mut(), flags)
}
pub(crate) unsafe fn new_uninit<ID>(
py: Python,
dims: ID,
strides: *const npy_intp,
flag: c_int,
) -> &Self
where
ID: IntoDimension<Dim = D>,
{
let mut dims = dims.into_dimension();
let ptr = PY_ARRAY_API.PyArray_NewFromDescr(
py,
PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type),
T::get_dtype(py).into_dtype_ptr(),
dims.ndim_cint(),
dims.as_dims_ptr(),
strides as *mut npy_intp, // strides
ptr::null_mut(), // data
flag, // flag
ptr::null_mut(), // obj
);
Self::from_owned_ptr(py, ptr)
}
unsafe fn new_with_data<'py, ID>(
py: Python<'py>,
dims: ID,
strides: *const npy_intp,
data_ptr: *const T,
container: *mut PyAny,
) -> &'py Self
where
ID: IntoDimension<Dim = D>,
{
let mut dims = dims.into_dimension();
let ptr = PY_ARRAY_API.PyArray_NewFromDescr(
py,
PY_ARRAY_API.get_type_object(py, npyffi::NpyTypes::PyArray_Type),
T::get_dtype(py).into_dtype_ptr(),
dims.ndim_cint(),
dims.as_dims_ptr(),
strides as *mut npy_intp, // strides
data_ptr as *mut c_void, // data
npyffi::NPY_ARRAY_WRITEABLE, // flag
ptr::null_mut(), // obj
);
PY_ARRAY_API.PyArray_SetBaseObject(
py,
ptr as *mut npyffi::PyArrayObject,
container as *mut ffi::PyObject,
);
Self::from_owned_ptr(py, ptr)
}
pub(crate) unsafe fn from_raw_parts<'py>(
py: Python<'py>,
dims: D,
strides: *const npy_intp,
data_ptr: *const T,
container: PySliceContainer,
) -> &'py Self {
let container = PyClassInitializer::from(container)
.create_cell(py)
.expect("Failed to create slice container");
Self::new_with_data(py, dims, strides, data_ptr, container as *mut PyAny)
}
/// Creates a NumPy array backed by `array` and ties its ownership to the Python object `container`.
///
/// # Safety
///
/// `container` is set as a base object of the returned array which must not be dropped until `container` is dropped.
/// Furthermore, `array` must not be reallocated from the time this method is called and until `container` is dropped.
///
/// # Example
///
/// ```rust
/// # use pyo3::prelude::*;
/// # use numpy::{ndarray::Array1, PyArray1};
/// #
/// #[pyclass]
/// struct Owner {
/// array: Array1<f64>,
/// }
///
/// #[pymethods]
/// impl Owner {
/// #[getter]
/// fn array<'py>(this: &'py PyCell<Self>) -> &'py PyArray1<f64> {
/// let array = &this.borrow().array;
///
/// // SAFETY: The memory backing `array` will stay valid as long as this object is alive
/// // as we do not modify `array` in any way which would cause it to be reallocated.
/// unsafe { PyArray1::borrow_from_array(array, this) }
/// }
/// }
/// ```
pub unsafe fn borrow_from_array<'py, S>(
array: &ArrayBase<S, D>,
container: &'py PyAny,
) -> &'py Self
where
S: Data<Elem = T>,
{
let (strides, dims) = (array.npy_strides(), array.raw_dim());
let data_ptr = array.as_ptr();
let py = container.py();
mem::forget(container.to_object(py));
Self::new_with_data(
py,
dims,
strides.as_ptr(),
data_ptr,
container as *const PyAny as *mut PyAny,
)
}
/// Construct a new NumPy array filled with zeros.
///
/// If `is_fortran` is true, then it has Fortran/column-major order,
/// otherwise it has C/row-major order.
///
/// For arrays of Python objects, this will fill the array
/// with valid pointers to zero-valued Python integer objects.
///
/// See also [`numpy.zeros`][numpy-zeros] and [`PyArray_Zeros`][PyArray_Zeros].
///
/// # Example
///
/// ```
/// use numpy::PyArray2;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray: &PyArray2<usize> = PyArray2::zeros(py, [2, 2], true);
///
/// assert_eq!(pyarray.readonly().as_slice().unwrap(), [0; 4]);
/// });
/// ```
///
/// [numpy-zeros]: https://numpy.org/doc/stable/reference/generated/numpy.zeros.html
/// [PyArray_Zeros]: https://numpy.org/doc/stable/reference/c-api/array.html#c.PyArray_Zeros
pub fn zeros<ID>(py: Python, dims: ID, is_fortran: bool) -> &Self
where
ID: IntoDimension<Dim = D>,
{
let mut dims = dims.into_dimension();
unsafe {
let ptr = PY_ARRAY_API.PyArray_Zeros(
py,
dims.ndim_cint(),
dims.as_dims_ptr(),
T::get_dtype(py).into_dtype_ptr(),
if is_fortran { -1 } else { 0 },
);
Self::from_owned_ptr(py, ptr)
}
}
/// Returns an immutable view of the internal data as a slice.
///
/// # Safety
///
/// Calling this method is undefined behaviour if the underlying array
/// is aliased mutably by other instances of `PyArray`
/// or concurrently modified by Python or other native code.
///
/// Please consider the safe alternative [`PyReadonlyArray::as_slice`].
pub unsafe fn as_slice(&self) -> Result<&[T], NotContiguousError> {
if self.is_contiguous() {
Ok(slice::from_raw_parts(self.data(), self.len()))
} else {
Err(NotContiguousError)
}
}
/// Returns a mutable view of the internal data as a slice.
///
/// # Safety
///
/// Calling this method is undefined behaviour if the underlying array
/// is aliased immutably or mutably by other instances of [`PyArray`]
/// or concurrently modified by Python or other native code.
///
/// Please consider the safe alternative [`PyReadwriteArray::as_slice_mut`].
pub unsafe fn as_slice_mut(&self) -> Result<&mut [T], NotContiguousError> {
if self.is_contiguous() {
Ok(slice::from_raw_parts_mut(self.data(), self.len()))
} else {
Err(NotContiguousError)
}
}
/// Constructs a NumPy from an [`ndarray::Array`]
///
/// This method uses the internal [`Vec`] of the [`ndarray::Array`] as the base object of the NumPy array.
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use ndarray::array;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::from_owned_array(py, array![[1, 2], [3, 4]]);
///
/// assert_eq!(pyarray.readonly().as_array(), array![[1, 2], [3, 4]]);
/// });
/// ```
pub fn from_owned_array<'py>(py: Python<'py>, mut arr: Array<T, D>) -> &'py Self {
let (strides, dims) = (arr.npy_strides(), arr.raw_dim());
let data_ptr = arr.as_mut_ptr();
unsafe {
Self::from_raw_parts(
py,
dims,
strides.as_ptr(),
data_ptr,
PySliceContainer::from(arr),
)
}
}
/// Get a reference of the specified element if the given index is valid.
///
/// # Safety
///
/// Calling this method is undefined behaviour if the underlying array
/// is aliased mutably by other instances of `PyArray`
/// or concurrently modified by Python or other native code.
///
/// Consider using safe alternatives like [`PyReadonlyArray::get`].
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
///
/// assert_eq!(unsafe { *pyarray.get([1, 0, 3]).unwrap() }, 11);
/// });
/// ```
#[inline(always)]
pub unsafe fn get(&self, index: impl NpyIndex<Dim = D>) -> Option<&T> {
let ptr = self.get_raw(index)?;
Some(&*ptr)
}
/// Same as [`get`][Self::get], but returns `Option<&mut T>`.
///
/// # Safety
///
/// Calling this method is undefined behaviour if the underlying array
/// is aliased immutably or mutably by other instances of [`PyArray`]
/// or concurrently modified by Python or other native code.
///
/// Consider using safe alternatives like [`PyReadwriteArray::get_mut`].
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
///
/// unsafe {
/// *pyarray.get_mut([1, 0, 3]).unwrap() = 42;
/// }
///
/// assert_eq!(unsafe { *pyarray.get([1, 0, 3]).unwrap() }, 42);
/// });
/// ```
#[inline(always)]
pub unsafe fn get_mut(&self, index: impl NpyIndex<Dim = D>) -> Option<&mut T> {
let ptr = self.get_raw(index)?;
Some(&mut *ptr)
}
#[inline(always)]
fn get_raw<Idx>(&self, index: Idx) -> Option<*mut T>
where
Idx: NpyIndex<Dim = D>,
{
let offset = index.get_checked::<T>(self.shape(), self.strides())?;
Some(unsafe { self.data().offset(offset) })
}
/// Get an immutable reference of the specified element,
/// without checking the given index.
///
/// See [`NpyIndex`] for what types can be used as the index.
///
/// # Safety
///
/// Passing an invalid index is undefined behavior.
/// The element must also have been initialized and
/// all other references to it is must also be shared.
///
/// See [`PyReadonlyArray::get`] for a safe alternative.
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
///
/// assert_eq!(unsafe { *pyarray.uget([1, 0, 3]) }, 11);
/// });
/// ```
#[inline(always)]
pub unsafe fn uget<Idx>(&self, index: Idx) -> &T
where
Idx: NpyIndex<Dim = D>,
{
&*self.uget_raw(index)
}
/// Same as [`uget`](Self::uget), but returns `&mut T`.
///
/// # Safety
///
/// Passing an invalid index is undefined behavior.
/// The element must also have been initialized and
/// other references to it must not exist.
///
/// See [`PyReadwriteArray::get_mut`] for a safe alternative.
#[inline(always)]
#[allow(clippy::mut_from_ref)]
pub unsafe fn uget_mut<Idx>(&self, index: Idx) -> &mut T
where
Idx: NpyIndex<Dim = D>,
{
&mut *self.uget_raw(index)
}
/// Same as [`uget`][Self::uget], but returns `*mut T`.
///
/// # Safety
///
/// Passing an invalid index is undefined behavior.
#[inline(always)]
pub unsafe fn uget_raw<Idx>(&self, index: Idx) -> *mut T
where
Idx: NpyIndex<Dim = D>,
{
let offset = index.get_unchecked::<T>(self.strides());
self.data().offset(offset) as *mut _
}
/// Get a copy of the specified element in the array.
///
/// See [`NpyIndex`] for what types can be used as the index.
///
/// # Example
/// ```
/// use numpy::PyArray;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0, 16, 1).reshape([2, 2, 4]).unwrap();
///
/// assert_eq!(pyarray.get_owned([1, 0, 3]), Some(11));
/// });
/// ```
pub fn get_owned<Idx>(&self, index: Idx) -> Option<T>
where
Idx: NpyIndex<Dim = D>,
{
unsafe { self.get(index) }.cloned()
}
/// Turn an array with fixed dimensionality into one with dynamic dimensionality.
pub fn to_dyn(&self) -> &PyArray<T, IxDyn> {
unsafe { PyArray::from_borrowed_ptr(self.py(), self.as_ptr()) }
}
/// Returns a copy of the internal data of the array as a [`Vec`].
///
/// Fails if the internal array is not contiguous. See also [`as_slice`][Self::as_slice].
///
/// # Example
///
/// ```
/// use numpy::PyArray2;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray= py
/// .eval("__import__('numpy').array([[0, 1], [2, 3]], dtype='int64')", None, None)
/// .unwrap()
/// .downcast::<PyArray2<i64>>()
/// .unwrap();
///
/// assert_eq!(pyarray.to_vec().unwrap(), vec![0, 1, 2, 3]);
/// });
/// ```
pub fn to_vec(&self) -> Result<Vec<T>, NotContiguousError> {
unsafe { self.as_slice() }.map(ToOwned::to_owned)
}
/// Construct a NumPy array from a [`ndarray::ArrayBase`].
///
/// This method allocates memory in Python's heap via the NumPy API,
/// and then copies all elements of the array there.
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use ndarray::array;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::from_array(py, &array![[1, 2], [3, 4]]);
///
/// assert_eq!(pyarray.readonly().as_array(), array![[1, 2], [3, 4]]);
/// });
/// ```
pub fn from_array<'py, S>(py: Python<'py>, arr: &ArrayBase<S, D>) -> &'py Self
where
S: Data<Elem = T>,
{
ToPyArray::to_pyarray(arr, py)
}
/// Get an immutable borrow of the NumPy array
pub fn try_readonly(&self) -> Result<PyReadonlyArray<'_, T, D>, BorrowError> {
PyReadonlyArray::try_new(self)
}
/// Get an immutable borrow of the NumPy array
///
/// # Panics
///
/// Panics if the allocation backing the array is currently mutably borrowed.
///
/// For a non-panicking variant, use [`try_readonly`][Self::try_readonly].
pub fn readonly(&self) -> PyReadonlyArray<'_, T, D> {
self.try_readonly().unwrap()
}
/// Get a mutable borrow of the NumPy array
pub fn try_readwrite(&self) -> Result<PyReadwriteArray<'_, T, D>, BorrowError> {
PyReadwriteArray::try_new(self)
}
/// Get a mutable borrow of the NumPy array
///
/// # Panics
///
/// Panics if the allocation backing the array is currently borrowed or
/// if the array is [flagged as][flags] not writeable.
///
/// For a non-panicking variant, use [`try_readwrite`][Self::try_readwrite].
///
/// [flags]: https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html
pub fn readwrite(&self) -> PyReadwriteArray<'_, T, D> {
self.try_readwrite().unwrap()
}
fn as_view<S: RawData, F>(&self, from_shape_ptr: F) -> ArrayBase<S, D>
where
F: FnOnce(StrideShape<D>, *mut T) -> ArrayBase<S, D>,
{
fn inner<D: Dimension>(
shape: &[usize],
strides: &[isize],
itemsize: usize,
mut data_ptr: *mut u8,
) -> (StrideShape<D>, u32, *mut u8) {
let shape = D::from_dimension(&Dim(shape)).expect(DIMENSIONALITY_MISMATCH_ERR);
assert!(strides.len() <= 32, "{}", MAX_DIMENSIONALITY_ERR);
let mut new_strides = D::zeros(strides.len());
let mut inverted_axes = 0_u32;
for i in 0..strides.len() {
// FIXME(kngwyu): Replace this hacky negative strides support with
// a proper constructor, when it's implemented.
// See https://github.com/rust-ndarray/ndarray/issues/842 for more.
if strides[i] >= 0 {
new_strides[i] = strides[i] as usize / itemsize;
} else {
// Move the pointer to the start position.
data_ptr = unsafe { data_ptr.offset(strides[i] * (shape[i] as isize - 1)) };
new_strides[i] = (-strides[i]) as usize / itemsize;
inverted_axes |= 1 << i;
}
}
(shape.strides(new_strides), inverted_axes, data_ptr)
}
let (shape, mut inverted_axes, data_ptr) = inner(
self.shape(),
self.strides(),
mem::size_of::<T>(),
self.data() as _,
);
let mut array = from_shape_ptr(shape, data_ptr as _);
while inverted_axes != 0 {
let axis = inverted_axes.trailing_zeros() as usize;
inverted_axes &= !(1 << axis);
array.invert_axis(Axis(axis));
}
array
}
/// Returns an [`ArrayView`] of the internal array.
///
/// See also [`PyReadonlyArray::as_array`].
///
/// # Safety
///
/// Calling this method invalidates all exclusive references to the internal data, e.g. `&mut [T]` or `ArrayViewMut`.
pub unsafe fn as_array(&self) -> ArrayView<'_, T, D> {
self.as_view(|shape, ptr| ArrayView::from_shape_ptr(shape, ptr))
}
/// Returns an [`ArrayViewMut`] of the internal array.
///
/// See also [`PyReadwriteArray::as_array_mut`].
///
/// # Safety
///
/// Calling this method invalidates all other references to the internal data, e.g. `ArrayView` or `ArrayViewMut`.
pub unsafe fn as_array_mut(&self) -> ArrayViewMut<'_, T, D> {
self.as_view(|shape, ptr| ArrayViewMut::from_shape_ptr(shape, ptr))
}
/// Returns the internal array as [`RawArrayView`] enabling element access via raw pointers
pub fn as_raw_array(&self) -> RawArrayView<T, D> {
self.as_view(|shape, ptr| unsafe { RawArrayView::from_shape_ptr(shape, ptr) })
}
/// Returns the internal array as [`RawArrayViewMut`] enabling element access via raw pointers
pub fn as_raw_array_mut(&self) -> RawArrayViewMut<T, D> {
self.as_view(|shape, ptr| unsafe { RawArrayViewMut::from_shape_ptr(shape, ptr) })
}
/// Get a copy of the array as an [`ndarray::Array`].
///
/// # Example
///
/// ```
/// use numpy::PyArray;
/// use ndarray::array;
/// use pyo3::Python;
///
/// Python::with_gil(|py| {
/// let pyarray = PyArray::arange(py, 0, 4, 1).reshape([2, 2]).unwrap();
///
/// assert_eq!(
/// pyarray.to_owned_array(),
/// array![[0, 1], [2, 3]]
/// )
/// });
/// ```
pub fn to_owned_array(&self) -> Array<T, D> {
unsafe { self.as_array() }.to_owned()
}
}
#[cfg(feature = "nalgebra")]
impl<N, D> PyArray<N, D>
where
N: nalgebra::Scalar + Element,
D: Dimension,
{
fn try_as_matrix_shape_strides<R, C, RStride, CStride>(
&self,
) -> Option<((R, C), (RStride, CStride))>
where
R: nalgebra::Dim,
C: nalgebra::Dim,
RStride: nalgebra::Dim,
CStride: nalgebra::Dim,
{
let ndim = self.ndim();
let shape = self.shape();
let strides = self.strides();
if ndim != 1 && ndim != 2 {
return None;
}
if strides.iter().any(|strides| *strides < 0) {
return None;
}
let rows = shape[0];
let cols = *shape.get(1).unwrap_or(&1);
if R::try_to_usize().map(|expected| rows == expected) == Some(false) {
return None;
}
if C::try_to_usize().map(|expected| cols == expected) == Some(false) {
return None;
}
let row_stride = strides[0] as usize / mem::size_of::<N>();
let col_stride = strides
.get(1)
.map_or(rows, |stride| *stride as usize / mem::size_of::<N>());
if RStride::try_to_usize().map(|expected| row_stride == expected) == Some(false) {
return None;
}
if CStride::try_to_usize().map(|expected| col_stride == expected) == Some(false) {
return None;
}
let shape = (R::from_usize(rows), C::from_usize(cols));
let strides = (
RStride::from_usize(row_stride),
CStride::from_usize(col_stride),
);
Some((shape, strides))
}
/// Try to convert this array into a [`nalgebra::MatrixView`] using the given shape and strides.
///
/// # Safety
///
/// Calling this method invalidates all exclusive references to the internal data, e.g. `ArrayViewMut` or `MatrixSliceMut`.
#[doc(alias = "nalgebra")]
pub unsafe fn try_as_matrix<R, C, RStride, CStride>(
&self,
) -> Option<nalgebra::MatrixView<N, R, C, RStride, CStride>>
where
R: nalgebra::Dim,
C: nalgebra::Dim,
RStride: nalgebra::Dim,
CStride: nalgebra::Dim,
{
let (shape, strides) = self.try_as_matrix_shape_strides()?;