forked from gboeing/osmnx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
67 lines (58 loc) · 2.92 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# OSMnx
# See full license in LICENSE.txt
import os
from setuptools import setup
# provide a long description using reStructuredText
LONG_DESCRIPTION = """
**OSMnx** is a package to easily download, model, project, visualize, and
analyze complex street networks from OpenStreetMap in Python with NetworkX.
You can get a city's or neighborhood's walking, driving, or biking network with
a single line of Python code. Then you can easily visualize cul-de-sacs or
one-way streets, plot shortest-path routes, or calculate stats like intersection
density, average node connectivity, betweenness centrality, etc.
Citation info: Boeing, G. 2017. "`OSMnx: New Methods for Acquiring, Constructing, Analyzing,
and Visualizing Complex Street Networks`_." *Computers, Environment and Urban
Systems* 65, 126-139. doi:10.1016/j.compenvurbsys.2017.05.004
See the examples and demos on `GitHub`_ or read more about `OSMnx`_.
.. _GitHub: https://github.com/gboeing/osmnx
.. _OSMnx: http://geoffboeing.com/2016/11/osmnx-python-street-networks/
.. _OSMnx\: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks: http://geoffboeing.com/publications/osmnx-complex-street-networks/
"""
# list of classifiers from the PyPI classifiers trove
CLASSIFIERS = ['Development Status :: 5 - Production/Stable',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent',
'Intended Audience :: Science/Research',
'Topic :: Scientific/Engineering :: GIS',
'Topic :: Scientific/Engineering :: Visualization',
'Topic :: Scientific/Engineering :: Physics',
'Topic :: Scientific/Engineering :: Mathematics',
'Topic :: Scientific/Engineering :: Information Analysis',
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8']
# only specify install_requires if not in RTD environment
if os.getenv('READTHEDOCS') == 'True':
INSTALL_REQUIRES = []
else:
with open('requirements.txt') as f:
INSTALL_REQUIRES = [l.strip() for l in f.readlines()]
# now call setup
setup(name='osmnx',
version='0.11.4',
description='Retrieve, model, analyze, and visualize OpenStreetMap street networks and other spatial data',
long_description=LONG_DESCRIPTION,
classifiers=CLASSIFIERS,
url='https://github.com/gboeing/osmnx',
author='Geoff Boeing',
author_email='[email protected]',
license='MIT',
platforms='any',
packages=['osmnx'],
install_requires=INSTALL_REQUIRES,
extras_require={'folium':['folium>=0.10'],
'kdtree':['scipy>=1.3'],
'balltree':['scikit-learn>=0.22']})