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Abstract

Conception, Implementation, and Evaluation of a Proof of Concept of a Modular
Proxy Application for Testing Internet of Things Applications

Today, more and more formerly analogue physical entities are now being digitized
and connected to the internet, adding to the “Internet of Things”. However, the wide
variety in appliances poses a potentially wide attack surface for malicious actors.
To address this risk that these so-called smart devices pose to parties that employ
them, security researchers and penetration testers examine and test their security
implementation. The need arises for a modular proxy application that allows to test
the heterogeneous landscape of communication protocols used in IoT applications.
The goal of this thesis is to conceptualize a design for such an application, realize a
prototypic implementation thereof and evaluate its usefulness. Quantitative results
are a documentation of the problem space, an abstract design concept and sets of
development challenges and lessons learned.

Konzeption, Implementierung und Evaluation eines Machbarkeitsnachweises
eines modularen Proxys zum Testen von Anwendungen im Internet der Dinge

Als Konsequenz der voranschreitenden Digitalisierung werden ehemals analoge
Geräte zunehmend digitalisiert und somit Teil des “Internets der Dinge” (“Inter-
net of Things”, IoT). Dabei stellt jedoch die große Bandbreite an Anwendungen
eine potenziell große Angriffsfläche für Angreifer dar. Um diesem Risiko, das die
sogenannten “smarten” Anwendungen gegenüber ihren Betreibern darstellen, zu
begegnen, untersuchen und überprüfen Sicherheitsforscher und Penetrationtester
deren Sicherheitsarchitekturen. Daraus erwächst ein Bedarf an einer modularen
Proxy-Anwendung, die sie dabei unterstützt, die heterogene Verwendung von Kom-
munikationsprotokollen in IoT-Anwendungen zu beherrschen. Ziel dieser Arbeit
ist die Konzeption eines Softwareentwurfs für eine solche Anwendung und deren
prototypische Umsetzung sowie eine Bewertung ihrer Nützlichkeit. Quantitative
Ergebnisse sind die Dokumentation der Problemstellung, ein abstraktes Entwurf-
skonzept und eine Reihe von Herausforderungen bei der Entwicklung sowie daraus
gewonnene Erkenntnisse.
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Chapter 1

Introduction

This chapter will introduce the underlying motivation of this thesis. Then, it will
give an overview of this thesis’ purpose and structure.

1.1. Motivation

Today scientific and industrial parties work on connecting physical entities such
as machines, buildings and even humans to the internet by equipping them with
digital sensors and actuators, referred to as “Internet of Things (IoT)”. While this
progression promises many positive effects, such as simplifying tasks in our per-
sonal day-to-day life (“Smart Home” applications), monitoring our personal health
(“eHealth”) and increasing efficiency and safety of industrial plants (“Industrial In-
ternet of Things (IIoT)”, also referred to as “Industry 4.0”), it also yields the risk of
introducing new attack-vectors to parts of our environment: “smart” devices used at
home or at other sensitive places may introduce weak security implementations or
faulty security design, resulting in private and personal data being available to par-
ties interested in violating the privacy of one’s home (e.g. vacuum robots leaking
information about the interior design of homes[46]) or conducting industrial espi-
onage which is an acute threat [4, p. 14].
The diversity of both deployed smart devices and the internet services those devices
are connected to, lead to the need and use of ever-increasing complex technologies
used for communication, data storage and access management, further adding to po-
tential attack-vectors of connected devices and distributed applications [19, p. 119].
This complexity and the sheer number of connected devices is actively being ex-
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1. Introduction

ploited by attackers today and the number of attacks on IoT devices is increasing
[10].
There are security guidelines, best practices and innovative approaches for devel-
oping secure smart applications [19, p. 120][20, p.326-328], however testing such
applications proves to be cumbersome: intercepting, dissecting, inspecting and ma-
nipulating the communication in these applications requires working on various
abstraction layers. In order to evaluate the security of such applications, penetra-
tion testers often spend a considerable amount of time dissecting applications and
setting up test-environments.
The goal of this thesis is to conceptualize, implement and evaluate a modular proxy
application that aids in examination of the security implementations of IoT applica-
tions.

1.2. Purpose and Structure of the Thesis

This thesis is separated into nine chapters: chapter 2 will give an overview of and
discuss related and previous work. After that, relevant fundamentals about com-
puter networks, IoT applications and information security will be covered in chap-
ter 3.
The chapters 5 to 8 describe the research and development process of the IoT proxy
application in chronological order: the problem space of the application is shown
and dissected in chapter 5, yielding essential insights into potential challenges and
technical requirements. Building upon these, the conceptual design of the IoT proxy
application is proposed in chapter 6. This includes the process of collecting, doc-
umenting and analysis of software requirements, describing the application’s work
context and designing a software architecture that complies with the aforementioned
requirements. Subsequently, chapter 7 involves a prototypical implementation of
the above-said software concept, focusing on the goals and constraints of the imple-
mentation, the tools and frameworks used and the realization of core components of
the application. The resulting implementation and the project itself are then anal-
ysed in an evaluation in chapter 8.
The thesis ends with a summary of all results produced and conclusions drawn from
the work on this project.
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Chapter 2

Related Work

As part of their master’s thesis, Bellemans conducted a study in 2020 that evaluated
the security and privacy implementations of fifteen “smart” devices from a wide
price range available on the market at the time. They performed automated analy-
ses and requested data access from manufacturers [7]. The thesis showed that the
devices made use of a variety of both standardized and proprietary transport and ap-
plication protocols. It also found severe flaws in the devices’ compliance to General
Data Protection Regulation (GDPR): about one third of the devices’ manufacturers
did not reply to GDPR requests at all, however Bellemans noted that the COVID-19
pandemic may have had an impact on their data access requests. The thesis suggests
that the introduction of a quality label that guarantees appropriate implementation
of security and privacy aspects could prove beneficial for customers.

In 2017, Apthorpe et al. presented a three stage strategy to examine metadata of
network traffic of four smart devices [3]. By monitoring the devices’ traffic, they
showed that even though the communication between the devices and their corre-
sponding internet servers were encrypted, passive observers could deduce informa-
tion about users’ behaviour by identification of the destination server and analysis
of the rate of traffic being sent. A noteworthy aspect of their work is that they
performed this analysis from an Internet Service Provider (ISP)’s point of view, ex-
clusively examining metadata of the communication that took place. The strategy
described in the paper consists of the following (greatly simplified) steps:

1. Identifying communication streams of individual devices (e.g. by examining
the TCP packets’ destination IPs).

3



2. Related Work

2. Associating the streams with specific device models (e.g. by performing
reverse-look ups of the aforementioned IPs).

3. Analysing traffic rates (presuming that traffic is generated upon taking mea-
sures).

Apthorpe et al. conclude that their strategy works well on inferring behaviour from
regular internet traffic of smart devices, however they suppose that shaping traffic or
making use of proxies (that effectively mask the destination IPs) could be effective
counter-measures. It is safe to assume that regular smart home setups do not make
use of proxies or traffic shaping though, thus being vulnerable to this kind of attack.
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Chapter 3

Theoretical Background

This chapter provides an overview of the technologies and concepts referred to in
subsequent chapters. Starting with section 3.2, essential concepts of computer com-
munication in networks will be presented and examined, detailing the concept of
network layers. Building upon these fundamentals, section 3.3 introduces the fields
of use of IoT applications popular protocols they make use of. After that, section
3.4 will provide insights into relevant concepts and the practices used and applied
in information security. It information security properties, methodology and tools
used in information security.

3.1. Design Patterns

The following sub-sections introduce a set of design patterns that are of relevance
to this work.

3.1.1. Pipeline/Pipes and Filters Pattern

In a paper from 1996, Alencar et al. describe the pipes and filters pattern as a mech-
anism to process streams of data [1]. They state that the pattern features “pipes”
and “filters” components: pipes relay data streams between filters while the filters
process the data streams’ contents. Figure 3.1 shows an exemplaric sequence of
n pipes and filters relaying and processing an object O by implementing pipes as
method calls. Alencar et al. state that the pattern’s “objective is to obtain highly
reusable, interchangeable and maintainable applications”.

5



3. Theoretical Background

Pipeline Behaviour

External Trigger Pipe 1 Filter 1 Pipe 2 Filter 2 Pipe n-1 Filter n-1 Pipe n Filter n

relay O

process O

relay O

process O

relay O

process O

relay O

process O

return O

return O

return O

return O

Figure 3.1.: An abstract sequence diagram of the pipes and filters design pattern. The relaying mechanism
used by pipes in this diagram is realized through method calls.

3.1.2. Abstract Factory/Kit Pattern

Gamma et al. describe the intent of the abstract factory pattern as follows: "provide
an interface for creating families of related or dependent objects without specifying
their concrete classes" [13]. They propose the following components:

• “AbstractProduct”: interface for products.

• “AbstractFactory”: interface for creating objects that implement “Abstract-
Product”.

• “ConcreteProduct”: classes that implement “AbstractProduct”.

• “ConcreteFactory”: classes that implements “AbstractFactory” and create “Con-
creteProducts”.
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3. Theoretical Background

• “Client”: class that only uses the interfaces of “AbstractProducts” and “Ab-
stractFactories”.

They conclude that there are multiple consequences to using the pattern, one being
that it “isolates concrete classes”, meaning that there is a clear isolation from the
Client and the ConcreteFactories.

3.1.3. Publish-Subscribe/Observer Pattern

In their book “Design Patterns - Elements of Reusable Object-oriented Software”,
Gamma et al. state that the observer pattern aims to "define a one-to-many depen-
dency between objects so that when one object changes state, all its dependents are
notified and updated automatically" [13]. To achieve this, they propose the follow-
ing components:

• “Observer”: interface for observing objects. It defines a single Update method.

• “Subject”: interface for observable objects that can (un-)register “Observers”
by defining Attach and Detach methods. It can notify its registered “Ob-
servers” by use of its Notify method which calls all of its “Observers’” Update

methods.

Gamma et al. point out a number of benefits using this pattern. The “support for
broadcast communication” is a benefit of particular relevance for this thesis as it
puts a focus on the simplification of the process of sending notification to multiple,
interested objects. For this reason, this pattern is used in communication protocols
such as Message Queuing Telemetry Transport (MQTT) (further elaborated on in
section 3.3.2).

3.2. Computer Communication: The OSI-Model

The Open Systems Interconnection (OSI)-Model was initially proposed in the International
Organization for Standardization (ISO)/International Electrotechnical Commission
(IEC) standard “ISO 7498 - Information processing systems — Open Systems Inter-
connection — Basic Reference Model” in 1984 and revised in 1994 by the ISO/IEC
standard 7498-1 [18]. It aims to formalize a unified approach to communication
between diverse peer systems by defining the network layers shown in figure 3.2.
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3. Theoretical Background

These layers are read from bottom to top, increasing in complexity and abstraction:

Figure 3.2.: “Seven layer reference model and peer protocols” [18] as proposed in ISO/IEC 7498.

1. Physical: Bitwise transmission of data (e.g. via copper cable or fibre glass).

2. Data Link: Aggregation of bitwise data into data frames (e.g. via Ethernet
packets sent via Wireless LAN (WLAN)) and transmission of those frames to
a communication destination.

3. Network: Encapsulates data frames into packets (e.g. Internet Protocol (IP)
packets) and routes and relays those packets across network nodes that are
identified by addresses (i.e. IP addresses).

4. Transport: Splits packets of arbitrary lengths into transmissible packets and
ensures their successful transmission (when using Transmission Control Pro-
tocol (TCP)). Also, it servers as an abstraction layer for applications that
operate on higher layers.

5. Session: Nowadays part of the TCP protocol, the session layer handles estab-
lishing and terminating of connections between applications.

6. Presentation: Encoding information in a format accepted by all communica-
tion peers involved (i.e. Extensible Markup Language (XML) and JavaScript
Object Notation (JSON)).

7. Application: High-level application functionality that makes use of the lower
layers to communicate with peers (e.g. Hypertext Transfer Protocol (HTTP)).

8



3. Theoretical Background

This concept of a stack of network layers results in a series of encapsulated mes-
sages. For example, a large HTTP response containing a binary file can be repre-
sented as follows over the various layers:

7. Application: The HTTP response itself.

6. Presentation: The text-based HTTP headers and the binary content encoded
as raw bytes.

5. (Session: Part of the TCP protocol.)

4. Transport: Multiple TCP packets with a binary payload and header informa-
tion about the source and destination ports.

3. Network: Multiple IP packets with a binary payload and header information
about the source and destination addresses.

2. Data Link: Multiple Ethernet frames with a binary payload and header infor-
mation about the source and destination peer’s Media Access Control (MAC)
addresses.

1. (Physical: Stream of individual bits that make up the Ethernet frames.)

3.3. Internet of Things

3.3.1. Fields of Use

In their paper, Perera et al. categorized IoT applications into several classes [34]:

A Smart Wearable: smart products that can be worn on different body parts or
clothing.

B Smart Home: connected applications installed and/or used in home environ-
ments.

C Smart City: connected applications for large-scale use in cities that support
logistic challenges such as traffic control and resource management.

D Smart Environment: applications that provide monitoring capabilities for en-
vironmental metrics such as air quality and water quality.

E Smart Enterprise: applications used in commercial and industrial environ-
ments to address challenging tasks such as logistics, transportation and energy
management.

9



3. Theoretical Background

3.3.2. Common Protocols

Building up on pre-existing network infrastructure and in order to meet require-
ments specific to individual fields of use and use-case scenarios, the landscape of
IoT attends with a great variety of communication protocols (further used to refer to
both transport and application protocols). This section will provide a brief overview
of the working principles, use cases and history of some protocols commonly used
in IoT and IIoT applications today.

Hypertext Transfer Protocol (HTTP)

Initially conceived by Berners-Lee et al. at the European Organization for Nuclear
Research (CERN) in 1991, the HTTP protocol is an application layer protocol that
defines requests to resources made by clients and responses to said requests replied
by servers [43]. According to RFC1945, HTTP requests consist of [28]:

• A request line including the HTTP verb (e.g. GET or POST ), the requested
resource and the HTTP version used (e.g. HTTP/1.0). The verb can be used
to indicates what kind action is requested (i.e. a GET request should retrieve
contents while a POST request could be used to create new content). The
request line is terminated by a set of Carriage Return (CR) Line Feed (LF)
characters.

• A set of request header fields delimited by a set of CR LF characters where
headers are encoded in the format Key : V alue.

• An empty line indicates the end of the header fields.

• Optionally, requests can contain a message body. Its encoding is dependent
on value of the Content−Type header. If present, the length of the message
body is specified in the Content− Length header.

The structure of HTTP responses is similar to HTTP requests [28]:

• A status line including the HTTP version and status code (e.g. 200 meaning
“OK”, indicating a successful response). The status line is terminated by a
set of CR LF characters.

• A set of response header fields, encoded just like the above-said request head-
ers.

10



3. Theoretical Background

• An empty line.

• Optional message body. Like request message bodies, the encoding of the
message body depends on the value of the Content− Type header.

Figure 3.3 shows a HTTP requests to the site “httpbin.org”. By definition, HTTP
sends data in clear-text. Thus, HTTP communication can be intercepted and ma-
nipulated by malicious actors. Hypertext Transfer Protocol Secure (HTTPS) was
introduced to solve this issue by sending HTTP requests and responses through
Transport Layer Security (TLS) encrypted connections [37].

Figure 3.3.: A truncated HTTP request (indicated by “>”) to “httpbin.org” using the utility “curl” and the
truncated response received from the remote server (indicated by “<”).

WebSocket (WS)

The WebSocket protocol is a bidirectional application protocol used on top of TCP
connections proposed in RFC6455 [22]. As stated in the RFC, it was designed
to enable web applications to communicate via a bidirectional channel. In order to
reuse existing infrastructure, WS was designed to upgrade existing TCP connections
for HTTP and replace the text-based HTTP communication with a binary frame-
based protocol. The WS protocol defines header fields for various purposes. One of
those fields is the reservedbits field that was intended to be used with extensions

11



3. Theoretical Background

to the protocol. One such extension is the Per-Message Compression Extension
(PMCE) that implements compression for frames [47].

Message Queuing Telemetry Transport (MQTT)

Proposed as an Organization for the Advancement of Structured Information Stan-
dards (OASIS) standard, MQTT is described as a protocol that requires a clien-
t/server architecture and employs the publish/subscribe pattern for message queue-
ing and routing [14]. MQTT clients can publish and subscribe to topics1. MQTT
servers (called “brokers”) do not transform messages or process them in any mean-
ingful way but only implement routing and broadcasting functionalities. Thus, con-
trary to other client/server based protocols, the central unit is not intended to process
the transmitted messages. Similarly to HTTP, MQTT by itself does not implement
security features and connection credential are sent in plain text. To improve on
this, TLS can be used as an underlying transport protocol to encrypt MQTT mes-
sages. In order to be used in web applications, MQTT can be tunnelled through WS
communication.

Industrial Protocols

In industrial automation environments, other additional protocols are used. These
include protocols that were initially conceived as serial protocols that communi-
cated via bus topologies (e.g. Modbus and Profibus) and were over time upgraded
to be operated in IP-based networks (e.g. Modbus TCP and Profinet) as well as
modern protocols that employ security features (such as OPC Unified Architec-
ture (OPC U/A)). As these protocols are of little relevance to this thesis, they are
not discussed in further detail.

3.4. Information Security

The following sections discuss properties, methodologies and tools used in infor-
mation security.

1Topics are arbitrary strings. MQTT defines special characters that can be used as wildcards.
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3. Theoretical Background

3.4.1. The CIA Triad

In information security, there are three properties to information systems defined in
ISO/IEC 27000:

• Confidentiality: “Property that information is not made available or disclosed
to unauthorized individuals, entities, or processes”. [17]

• Integrity: “Property of accuracy and completeness”. [17]

• Availability: “Property of being accessible and usable on demand by an au-
thorized entity”. [17]

These properties are commonly referred to as the “CIA triad” of “CIA definitions”.
However, there are shortcomings to these definitions that are discussed in literature:
for instance, by presenting a set of examples, Lundgren et al. point out that the CIA
definitions are not suitable to appropriately cover all security requirements [21].

3.4.2. Methodology

Information security involves a variety of techniques and methodologies. The ones
relevant to this work are discussed in the following sections.

Penetration Testing

The SANS Institute defines penetration testing as “the authorized, scheduled and
systematic process of using known vulnerabilities in an attempt to perform an in-
trusion into host, network or application resources” [9].
There are various guidelines for penetration tests targetting different types of appli-
cations: The Open Web Application Security Project (OWASP) Application Secu-
rity Verification Standard (ASVS), Mobile Application Security Verification Stan-
dard (MSVS) and IoT Security Verification Standard (ISVS) propose open stan-
dards for conducting web application, mobile application and IoT penetration tests,
respectively [30][32][31].
The OWASP Penetration Testing Execution Standard (PTES) divides the penetra-
tion testing process into seven phases [33]:

1. Pre-engagement Interactions: Preparation of the penetration test and defini-
tion of the scope of the test (e.g. networks and duration).
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2. Intelligence Gathering: Collecting information about the target systems (e.g.
making use of Open Source Intelligence (OSINT) methods and tools) to re-
duce the risk of being detected by security systems.

3. Threat Modelling: Inferring potential systems in place, risks associated with
the operation of those and possible mitigations thereof that may indicate po-
tential attack vectors2.

4. Vulnerability Analysis: Identification and verification of vulnerabilities.

5. Exploitation: Active abuse of found vulnerabilities to achieve goals such as
privilege escalation or pivoting3.

6. Post Exploitation: Establishing persistent access to compromised systems and
exfiltration of data (such as evidence of compromise).

7. Reporting: Producing a report that documents found vulnerabilities and ex-
ploits used against the system. This document serves the contractor as a basis
for decisions to make about the further development of the system.

Red-Teaming

Oakley describes (cyber) red-teaming as a technique “to simulate [an] attack against
an organization to test information systems and their related facilities” [29, p.1-14].

Fuzzing

Sutton et al. define fuzzing as “a method for discovering faults in software by
providing unexpected input and monitoring for exceptions” indicating “undefined
or insecure behaviour” [42, p.22].

Man-In-The-Middle Attacks

The Australian Cyber Security Centre (ACSC) defines Man-in-The-Middle (MITM)
as “a form of malicious activity where the attacker secretly accesses, relays and

2“The attack vector is the way in which an attack reaches its target.” [15]
3“Pivoting is the exclusive method of using an instance also known by ‘foothold’ to be able to ‘move’ from

place to place inside the compromised network.” [40]
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possibly alters the communication between two parties who believe they are com-
municating directly with each other” [35].

3.4.3. Tools

There are many tools used in information security. They vary greatly in their fea-
tures, fields of use and maturity. The following paragraphs describe tools relevant
to this thesis and the fields of use it touches.

Wireshark First released in 1998, Wireshark is a cross-platform and open-source
tool used for network analysis, including network sniffing4 [44]. It is written mainly
in C, consists of more than 3,600,000 lines of C code5 and features a Graphical
User Interface (GUI). Although it is described as a network protocol analyser, it
also supports sniffing of Universal Serial Bus (USB) packets. It implements a wide
array of dissectors for various protocols and allows detailed examination of network
packets (as shown in figure 3.4).

Protocol Specific MITM Tools

The following tools are MITM that support specific protocols only:

Burp Suite Developed and distributed by “PortSwigger” as a commercial product,
Burp Suite is a tool specialized for web-application testing [36]. It can be used as
a MITM for HTTP communication by configuring the operating system or browser
to use its internal HTTP server as a proxy. While it implements basic support for
WS, it is mainly used for HTTP (and nowadays HTTPS) and lacks support for other
protocols. Aside from its internal proxy server, it also provides specialized features
such as the “Repeater” which is used to send forged HTTP requests. The freely
available “Community Edition” (shown in figure 3.5) allows use of most of the
tool’s features.

4“Packet sniffing is a method of tapping each packet as it flows across the network.”[2]
5This number was returned by the cloc utility run on commit c73ab16b from 23rd May 2021 of Wireshark’s

GitLab source-code repository [45].
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Figure 3.4.: Screenshot of Wireshark being executed and dissecting a HTTP GET request to the site
“httpbin.org”. The display-filter “tcp.port == 80” shows only packets sent to or from port 80
(e.g. HTTP communication).

mitmproxy “A” multi-purpose MITM tool that implements (de-) serialization of
TCP packets, TLS, HTTP, and WS communication [24]. It is written in Python and
features a web-interface and a Python application programming interface (API) for
extending mitmproxy.

mProxy A MQTT proxy written in Go that by itself does not feature any interac-
tive interfaces for penetration testers and lacks support for MQTT over TLS [26]. It
is, however, scriptable and enables penetration testers to execute scripts on individ-
ual MQTT messages.

IOXY Similarly to mProxy, “IOXY” is a MQTT proxy written in Go. It improves
on mProxy’s shortcomings and implements a web interface and supports MQTT
over TLS [16].
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Figure 3.5.: Screenshot of Burp Suite being used to send forged HTTP requests to the site “httpbin.org”.

Generic MITMs Tools

The following tools are generic MITM tools that support a wide range of network
protocols:

ettercap While ettercap was initially developed as a network sniffer for switched
Local Area Network (LAN), it was gradually extended to implement a set of MITM
attacks such as Address Resolution Protocol (ARP) spoofing and packet filtering

which allowed modifying intercepted communication [12]. Penetration testers can
write custom filters in a scripting language to implement their own packet filtering
logic. It is written in C and implements network protocols of layers 1 to 4 of the
OSI model. Thus, it does not implement application protocols.

bettercap Similar to ettercap, bettercap implements network sniffing and other
features used for network analysis and discovery. However, contrary to ettercap,
it aims to support a wider range of transport technologies and is described by its
authors as “the Swiss Army knife for WiFi, Bluetooth Low Energy, wireless HID

hijacking and IPv4 and IPv6 network reconnaissance and MITM attacks” [8]. It is
written in Go and features a web-interface for configuration, control and monitor-
ing.

17



3. Theoretical Background

Scapy Its authors describe “scapy” as a “a powerful interactive packet manipula-
tion program” [39]. It is written in Python and can be used to craft and parse packets
of various protocols.

MITMf Built on top of scapy, “MITMf” implements a set of attacks against net-
work devices [23]. However, it is no longer updated and its authors suggest using
bettercap instead.

18



Chapter 4

Procedure

The following chapters document the work on the design concepts and implemen-
tations of the modular proxy application in chronological order. However, the com-
mon thread running through these chapters can be hard to miss which is why this
chapter briefly elaborates on the procedure of and steps taken in this work.
To get an understanding of the problem space, a first prototype was built. The chal-
lenges that were encountered during implementation resulted in a set of questions
towards experts. These very specific questions and a set of generic questions re-
garding the context of assessing the security of IoT applications were what became
an interview guideline. This guideline was used to conduct interviews with a set of
experts and answer the aforementioned questions.
These answers and the insights gained from designing and implementing the first
prototype were then considered during two consecutive iterations of developing a
new design concept. The resulting design concept was then used to implement an-
other prototype.
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Chapter 5

Understanding the Problem Space

In order to provide a satisfying solution to the problem at hand, the problem itself
and the environment it occurs in must be researched. This chapter aims to explore
and examine the problem space, resulting in a set of artefacts (namely a scenario and
a set of requirements) that aid in understanding the context and designing an appro-
priate solution. First, a prototypical network proxy is designed and implemented
in section 5.1 to get an understanding of the problems and challenges involved in
designing, implementing and using such software. Based on these experiences, in-
terviews with experts in penetration testing are conducted and evaluated in section
5.2 to get a proper understanding of their everyday work and accompanying prob-
lems. Lastly, existing software that aims to intercept communication for various
scenarios and technologies is compared in section 5.3 and their usefulness for the
problem-specific scenarios is assessed.

5.1. Prototypical Implementation

The prototype was designed to be used in three different scenarios, each taking
place in a different context. The goal of this section was to implement a prototype
that could be used as a proxy to intercept communication between an IoT device
and its cloud service as shown in figure 5.1. It was developed incrementally so
individual components could be derived from requirements, designed, implemented
and evaluated in fixed sprints.
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Local Network Remote Infrastructure

MQTTIoT Device Cloud Service
(Azure, ...)

(a) Regular communication between an IoT device and a cloud service.

Remote InfrastructureLocal Network

MQTTIoT Device Cloud Service
(Azure, ...)MQTTIoT Proxy

(MITM)

(b) Communication intercepted by a MITM proxy.

Figure 5.1.: Installing a MITM proxy to intercept network communication for penetration testing.

5.1.1. Example Scenarios

The following scenarios describe hypothetical configurations of IoT/IIoT devices
that should be tested with the prototype and vary in both technical and logical com-
plexity as well as in closeness to reality:

Scenario #1: Legacy Industrial Control System (ICS) Application

In this IIoT scenario, a Human-Machine Interface (HMI) (e.g. Siemens KTP400

Basic) sends commands to and receives data from a Programmable Logic Con-
troller (PLC) (e.g. Siemens S7-1200) using Modbus TCP (depicted in figure 5.2).
The PLC continually counts up a value up to 100 and begins anew at zero while the
HMI displays the current value and provides a button that, upon being pressed by a
user, resets the current value to zero.
In this scenario, attackers could perform a variety of attacks on the system by inter-
cepting and manipulating network traffic, for example:

ModbusTCP
<<Client>> 

HMI
<<Server>> 

PLC

Figure 5.2.: The simplistic architecture of the first scenario.

• By dropping messages sent from the PLC to the HMI, the application may
appear unresponsive as new data is not displayed on the HMI. In production
environments, this could lead to dangerous situations as sensor readings that
indicate harmful environmental conditions would not be presented to super-
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vising personnel (e.g. sensor readings indicating dangerously high pressures
of a gas tank).

• When dropping messages sent from the HMI to the PLC, control commands
can be suppressed. This attack can result in catastrophic situations when
emergency shutdowns issued by supervising personnel are not registered by
the affected machines.

Although this scenario involves a rather simple process, it depicts a realistic com-
munication configuration. It focusses on the use of a legacy transport protocol.
Due to the rather simple structure of the Modbus TCP protocol, intercepting and
manipulating communication is expected to be trivial.

Scenario #2: IoT Cloud Application

As shown in figure 5.3, this IoT smart home scenario utilizes two local IoT de-
vices that are integrated into a cloud environment such as the Amazon Web Ser-
vices (AWS) IoT platform: a thermometer and an Air Conditioner (A/C) unit. Both
devices connect to the cloud platform, authorize themselves at a Representational
State Transfer (REST) interface via HTTP and upgrade their HTTP connection to
WS streams upon successful authorization. They eventually communicate to a re-
mote MQTT broker by tunnelling MQTT packets over the WS stream. At this stage,
the thermometer publishes temperature readings to an MQTT topic while the A/C
unit subscribes to the same topic and adjusts its operation depending on the incom-
ing temperature readings.
If not securely configured, this distributed communication setup introduces a set
of possible attacks that could be performed when attackers impersonated client-
devices or the remote server:

<<MqttBroker>> 
CloudService

<<MqttClient>> 
Thermometer

<<MqttClient>> 
A/C

Figure 5.3.: The central MQTT broker relays messages to subscribed clients. In this case, the A/C unit
receives messages published to a topic it subscribed to.

• Impersonating the thermometer, attackers could send incorrect temperature
data and effectively control the A/C unit. When sending low temperature
readings while the environment temperature is high, the A/C unit would stop
running. Conversely, when high temperature readings are sent while the en-
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vironment temperature is low, the A/C unit would run, and thus further cool
down the environment.

• Attackers that impersonate the remote server could drop or manipulate incom-
ing publish packets, thus altering whether and/or what information is relayed
to other connected devices. For example, temperature readings that indicate a
high environment temperature that would lead to the A/C unit to be powered
up could be rewritten in such a way that the transmitted temperature value
is considered to indicate a low environment temperature, thus preventing the
A/C unit from running automatically.

TCP
Connect

Perform
UpgradeHTTP

Server
MQTT
Broker

(via WS)

Process
Requests

Process
Messages

Figure 5.4.: State machine of AWS IoT communication

This scenario makes use of three communication protocols, uses these protocols
dependent on the state of authentication and even tunnels one protocol through an-
other one. Therefore the proxy application has to implement a state-machine (as
seen in figure 5.4) and testing communication in this scenario is expected to be
more complex than the first one. Also, since this scenario makes use of the AWS
IoT infrastructure, special care must be taken to ensure that authentication is prop-
erly relayed to the cloud servers.

Scenario #3: Water Treatment Plant

Similar to scenario #2, this scenario makes use of MQTT for transporting messages.
However, the scenario takes place in an ICS context of critical infrastructure.

As shown in figure 5.5, there are multiple steps involved in treating water for drink-
ing. The scenario represents these steps as separate stations (“source”, “floccu-
lants”, “sedimentation”, “filtration”, “disinfection” and “storage”) that act as MQTT
clients. Each station receives water into an input tank, processes water from its in-
put tank in a specified rate and flushes processed water into an output tank. Similar
to how threads can suffer from starvation in a multithreading environment, these

1https://en.wikipedia.org/wiki/File:Illustration_of_a_typical_drinking_water_treatment_process.png
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Figure 5.5.: Illustration of a typical drinking water treatment process. (by the CK-12 Foundation)1

stations can either “run dry” when their input tank is empty or overflow when either
tank is filled beyond their capacity. In this scenario, stations will only process water
from their input tanks if their output tank provides sufficient available capacity.
Similar to scenario #2, attackers could perform a series of attacks in this scenario:

• Without intercepting any communication, attackers could cyclically overwrite
water levels of either input or output tanks to stop stations and bring process-
ing to a halt. For example, when attackers overwrite the “storage” station’s
input tank level to indicate exhausted capacities, the “disinfection” station
would fill its output tank and eventually stop processing water. This would
cause the “disinfection” station’s input tank to fill up and lead to the “filtra-
tion” station’s output tank to fill up. Ultimately, the water treatment plant
would halt.

• When any station publishes data about its tanks’ levels indicating full or
empty capacities, attackers could intercept those messages and change them
to either indicate the opposite (change tank levels indicating full capacities to
levels indicating empty capacity) or some arbitrary level information. This
could lead to either pumping water from empty tanks, potentially damaging
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the pumps, or to overfilling tanks, leading to leaking excess water and poten-
tially damaging further equipment.

• Attackers that intercept messages between the stations and the broker can col-
lect and analyse them and try to draw conclusions about the use and activity of
the system. This may allow attackers to identify patterns that show when the
plant is operating at high capacities, maximizing the effect of attacks against
the plant.

<<MqttClient>> 
Source

<<MqttClient>> 
Flocculants

<<MqttClient>> 
Sedimentation

<<MqttClient>> 
Filtration

<<MqttClient>> 
Disinfection

<<MqttClient>> 
Storage

<<MqttBroker>> 
ProcessControl

Figure 5.6.: MQTT clients for each station of the water treatment plant publish messages about their tanks’
levels to individual topics and subscribe to their succeeding station’s tank levels in order to
simulate flushing water into their input tanks.

This scenario greatly simplifies drinking water treatment by reducing the process
to the producer-consumer problem known from multithreading. A more realistic
representation of drinking water treatment plants would take further details of the
operations of such plants into account.
This scenario involves only MQTT as a transport protocol but, as can be seen in
figure 5.6, it requires six MQTT clients to run simultaneously.

Derived Use-Cases

Summarizing the scenarios detailed above, a number of high-level use-cases can be
derived from them (shown in 5.7). The actors are the attacker that intends to interact
with the system in a potentially malicious way and the server and device that use
the system for transportation of messages. The following use-cases are found in the
aforementioned scenarios:
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System

Analyse 
Messages

Manipulate 
Messages

Send/Receive 
Messages

Extends

Drop 
Messages

Extends

Extends

Server

Attacker

Device

Figure 5.7.: High-level use-cases of a proxy in a generic IoT/ICS environment.

• Send/Receive Messages: The server and device send and receive messages
to communicate with each other. This interaction does not require interaction
with the attacker.

• Drop Messages: The attacker discards incoming or outgoing messages by
not relaying them to the intended target. This can cause loss of control in the
application that this communication takes place in.

• Manipulate Messages: Incoming or outgoing messages can be changed by
an attacker, altering various properties such as Quality of Service (QoS) (for
MQTT messages), host (for HTTP requests) or the payload of a message (e.g.
the content of an HTTP response).

• Analyse Messages: Attackers can collect and analyse messages passively
without altering them, allowing them to deduce information about the be-
haviour of the affected system and potentially its user(s).

5.1.2. Requirements

To be able to operate in all of the aforementioned scenarios, the prototype had to
implement a set of functional requirements:
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F1 Protocols
The software must implement parsing/crafting messages/packets of the
communication protocols: HTTP2, WS, MQTT and Modbus TCP.

Fit criterion: The software must implement and support the HTTP,
WS and MQTT protocols so that messages of those protocols can be
further processed by the software.

F2 Network Stacks
The software must be able to parse protocols that are tunnelled through
other protocols (“stacked”). It must provide an interface to the user
where they can specify which communication protocols are used and
whether and how they are stacked (further referred to as network stack).

Fit criterion: The software processes a configuration file that lets users
specify which protocols are used and whether/how they are stacked.

F3 State-Machines
The software must be able to switch network stacks and scripts for
processing dependent on configurable states and transitions between
them. It must provide an interface for the user to specify when to
switch to using another network stack, represented using Finite-State
Machines (FSMs) and rule sets for transmission between states.

Fit criterion: The software processes a configuration file that lets users
specify when to switch between network stacks.

F4 Integration
The software shall provide interfaces for integration of third-party soft-
ware.

Fit criterion: The software implements interfaces that allow sending
packets to other applications such as “Burp Suite”.

F5 Scripting
The software shall provide scripting capabilities for automated manip-
ulation and discarding of messages.

Fit criterion: Users can define scripts that are executed on messages.
2HTTPS was deemed relevant as the prototype as of an academic nature and the addition of Secure Socket

Layer (SSL) introduced further complexity.
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F6 Logging
The software shall provide means for collecting and saving messages
for future analysis.

Fit criterion:The software saves messages to a MySQL database.

The following non-functional requirements were defined:

N1 Platform Compatibility
In order to support a broad spectrum of target platforms, the software
shall be implemented platform-independently.

N2 Reusability
The software shall be reusable so it can be used in future tests that may
feature new configurations of network stacks.

N3 Open Source
The software shall be available as open source software so programmers
and members of the IT community may contribute to improving it.

Due to this implementation serving as a prototype and being of an academic nature,
no specific constraints were defined. It was to be developed strictly ignoring aspects
of usability and stability as it should not be used in production environments but in
laboratories exclusively.

5.1.3. Design

The prototype was designed to be fit for use in the second scenario as, regarding
network communication, it was more complex than the other ones. Specifically,
the second scenario demanded the implementation of a network stack and a state
machine to switch between states. Parsing protocols that were tunnelled through
other protocols appeared to be a potentially challenging requirement which is why
the focus on the design and implementation of this prototype was on the underlying
management, processing and relaying of messages. In order to tackle it, a variation
of the pipeline (sometimes referred to as pipes and filters) design pattern was used
(as shown in figure 5.8). It was designed to be used as follows:
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Messages originate from a listener, for example messages with raw byte payloads
are received from a TCP socket. These messages are sent to an initial pipe to be
processed down.

Pipe 
(Routing)

(Next)

Filter 
(Processing)stateless

Encoder 
((De-)Serializing) stateful

ListenerIoT Device
Cloud Service 
(e.g. AWS)

Figure 5.8.: The variation of the “pipes and filters” design pattern used in the prototype.

Pipes are bi-directional routers that represent processing-steps of pipelines and per-
form the following actions on messages that are processed through a pipeline:

1. Pipes use optional encoders to disassemble/de-serialize messages when pro-
cessing them down the pipeline and re-assemble/serialize them when they
process messages up the pipeline.

2. Pipes can use filters to perform operations on messages such as replacing
header values or manipulating payloads.

3. They forward messages to the next pipe in its pipeline when processing mes-
sages down or to the previous pipe when processing messages back up.

There are extensions to basic pipes such as:

• EndPipes are appended to the end of a pipeline and reverse the message pro-
cessing direction so messages that were processed down are sent back up the
pipeline to be processed up.

• ProcessingPipes mandate encoders and filters to be used. These pipes are
used to indicate that messages are not only routed but also processed and
encoded or decoded.

• IntegrationPipes allow integration of other software into the pipeline. For
example, penetration testing software such as Burp Suite could be integrated.

An exemplaric configuration of the pipeline design pattern envisioned for this pro-
totype for use in the AWS IoT scenario is shown in figures 5.9 and 5.10. These
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State 1: HTTP

IoT Device AWS Cloud

«Transport Layer»
TCP Socket Client SocketServer Socket

«Application Layer»
TLS/SSL EncoderDecoder

Processing
Pipe Up

Out
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Down

Out
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Processing
Pipe Up

Out

In

Down

Out

In

«Application Layer»
HTTP EncoderDecoder

Intergration-
Pipe Up

Out

In

Down

Out

In

External Tool
(e.g. BurpSuite)

Black-Box Systems

IoT Proxy Network Stack

Figure 5.9.: AWS IoT Scenario - State 1: HTTP Server

diagrams visualize how messages are processed down and back up.
Figure 5.9 shows the first state of the AWS IoT scenario that processes HTTP com-
munication. It features a TCP server socket that accepts incoming connection re-
quests from an IoT device and a client socket that is connected to the AWS cloud.
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Since the communication to the AWS cloud is TLS-encrypted, it is first decrypted
by a filter and then processed by a HTTP filter. Then, the parsed HTTP requests and
responses are sent to external tools (e.g. Burp Suite). Once the end of the pipeline
is reached, the messages are sent back up the pipeline, being encoded back into a
form usable for the IoT device or cloud server.

Once the prototype detects that the state must be changed to processing MQTT
over WS communication, a different network stack is initialized and used, as shown
in figure 5.10. In this state, TLS-encryption is decrypted and passed into a WS filter
that (de-)serializes WS packets. The payload of data frames is then forwarded to
an MQTT layer. In this specific configuration shown in figure 5.10, the payload of
MQTT messages is (de-)serialized as JSON before being sent to external tools by
the integration pipe.

5.1.4. Testing

To test the prototype, a simple testbed was designed and implemented to realize sce-
nario #3 (discussed in section 5.1.1). It consisted of two Debian 10 machines that
acted as a MQTT broker and clients and a Kali Linux machine that ran the prototype
and provided tools such as Wireshark that could be used for debugging and mon-
itoring network traffic. All machines were connected to a single network (shown
in figure 5.11) and were assigned static IP addresses. While this setup allowed for
more sophisticated MITM mechanisms such as ARP spoofing, the decision was
made to configure the MQTT clients to directly connect to the kali machine to re-
duce complexity and accelerate and simplify testing. Separate machines were used
for the MQTT broker and clients so that actual MITM attacks could be performed if
the need to arose. Also, running the broker on a separate machine simplified debug-
ging as network traffic could be attributed to broker or clients easier by examining
the packets’ source and destination IPs.

The MQTT broker software used on the broker machine was Eclipse Mosquitto3

1.5.7 and had the WS transport enabled to allow clients to connect via WS. The
MQTT clients running on the client machine were implemented in Python using
the Eclipse Paho library for Python (paho-mqtt4).

3https://mosquitto.org/
4https://pypi.org/project/paho-mqtt/
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State 2 - MQTT via WS
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Figure 5.10.: AWS IoT Scenario - State 2: MQTT via WS

The water treatment scenario required water treatment stations to be simulated indi-
vidually as separate MQTT clients, which was done by representing them as “Pro-
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client 
10.0.10.2
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Virtual Switch

Figure 5.11.: A network diagram of the testbed that was used for testing the prototype.

MqttUnit

+ data: dict

- client: MqttClient

- thread: Thread

- topics: string[]

+ start(): void

+ stop(): void

+ publish(): void

+ run(deltaTime): void

~ process(deltaTime): void

ProcessingUnit

+ input_tank_volume: int

+ output_tank_volume: int

+ throughput: int

+ processing_enabled: bool

+ pump_enabled: bool

+ process(deltaTime): void

SourceUnit

+ throughput: int

Figure 5.12.: The “ProcessingUnit” data-structures represent individual stations of the simplified water
treatment plant.

cessingUnits” in the Python implementation of the testbed. As can be seen in fig-
ure 5.12, ProcessingUnits held individual MqttClient instances running in separate
threads, were subscribed to the topics of relevant other units such as their direct pre-
decessors and successors and were capable of publishing their current state. Their
process method would be called cyclically and allow for units to calculate their
intake, throughput and output.

These units were then “chained” up (shown in figure 5.13) in the order in which they
were presented in the scenario by specifying their direct predecessor and successor
units: potentially contaminated water would be pumped out of the source, processed
by a series of stations and eventually flushed into the storage. The source was an
instance of the “SourceUnit” that featured a throughput calculated by a sine-wave
function that used the elapsed time since program startup as input parameter. Also,
in order to keep the program running infinitely without either the source “running
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pump into
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Storage
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Figure 5.13.: Chaining of the water treatment units, originating from a water source and eventually leading
to a storage at the end of the processing pipeline.

dry” due to its input tank emptying or the storage overfilling, the storage’s output
was programmed to feed back into the source’s input tank (as can be seen in figure
5.14). While this was not a realistic approach, it kept the program’s design simple
and allowed for continuous testing and did not impact the MQTT communication.

Figure 5.14.: Screenshot of the application “MQTT Explorer” that was used to inspect and visualize the
state of the water treatment plant. The left graph shows how the source’s input tank steadily
emptied until it was filled by the storage’s output tank. The right graph shows how the
flocculant unit’s input tank slowly filled up.

5.1.5. Implementation

The prototype was partially implemented over the course of 8 weekly sprints after
which work on the prototype was halted due to time constraints. It was written
in TypeScript due to the language’s flexibility and static typing. It allowed to pre-
cisely specify interfaces and its runtime (NodeJS) would allow it to make use of
asynchronous programming, which would benefit this prototype as this simplifies
working with asynchronous tasks (such as networking). The rough design worked
out in section 5.1.3 was specified in greater detail so individual classes could be
derived and implemented.

Pipes and Filters As shown in figure 5.15 the pipeline design pattern was al-
tered in such a way that the basic IPipe interface was implemented by the BasePipe

class that held a reference to a single IFilter but lacked a reference to an IEncoder.
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<<interface>> 
IPipe

+ previous: IPipe

+ next: IPipe

+ name: string

~ processDown(Message): void

~ processUp(Message): void

BasePipe

# options: IPipeOptions

- filterDown: IFilter

- filterUp: IFilter

+ forwardDown(Message): void

+ handleProcessDown(Message): void

+ handleProcessUp(Message): void

EndPipe

<<interface>> 
IFilter

+ name: string

+ protocol: string

+ description: string

+ encoder: IEncoder

~ process(Message): MessageTreatment

<<enum>> 
 MessageProcessBehaviour

Process

Forward

Drop

MessageTreatment

+ processBehaviour: MessageProcessBehaviour

+ origin: IFilter

Use
<<interface>> 

IEncoder

+ encode(IPayload): IPayload

+ decode(IPayload): IPayload

Figure 5.15.: The classes and interfaces used to implement pipelines in the TypeScript prototype.

Filters would hold a reference to encoders because encoders were used directly by
filters for (de-)serialization prior to any other processing (such as executing scripts).
Thus, encoders would not exist without filters, resulting in a composition relation-
ship between the two. As indicated by their prefix, IFilters and IEncoders were
only interfaces that set a behaviour for their specific uses: encoders would imple-
ment (de-)serialization of specific protocols while filters added logic to processing
(de-)serialized packets, such as executing scripts. The prototype implemented en-
coders for HTTP and MQTT as well as a BaseFilter that did not add any logic to
processing but allowed to test the encoder implementation. Also, specific NopFil-

ter and NopEncoder (“Nop” meaning “no operation”) classes were implemented
that did not implement any logic. This was used to test sending messages down
and up the pipeline without processing them at all. The MQTT encoder used the
“mqtt-packet”5 library which offered a comparatively simple API for serializing
(generate(Packet)) and de-serializing (parser.parse(Buffer)). However, lacking a li-
brary that offered a similar low-level and simple API for HTTP (de-)serialization, a
custom encoder for these tasks was implemented. Due to HTTP being a compara-
tively simple and text-based protocol, all that needed to be done for de-serialization
was parsing the HTTP headers (separated by new-lines) and, depending on whether
or not the “Content-Length” header was present, extracting the HTTP body.

Messages and Payloads The pipeline system implemented routing and process-
ing of messages, however this required a concept of what messages are and how

5https://github.com/mqttjs/mqtt-packet, commit 4b6278d890e0c2fca01da62c5f9b63e05f5fd899
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Message

+ id: number

+ direction: MessageDirection

+ protocol: string

+ payload: IPayload

+ meta: string[]

MessageDirection

+ source: string

+ destination: string

<<interface>> 
IPayload

+ type: PayloadType

+ data: any

+ create(any): IPayload

BinaryPayload StringPayload ObjectPayload

<<enum>> 
PayloadType

Binary

String

Object

Figure 5.16.: The structure of messages in the prototype: messages hold information about their commu-
nication direction, protocol-specific meta data and type-dependent payloads.

they convey the information required to perform meaningful and useful operations
on network communication. Figure 5.16 shows the classes and interfaces that de-
fined the messages and payloads types. Messages hold basic information such as a
unique identifier, the communication protocol they were sent through and metadata
that was used to store header information in. The IPayload interface allowed for
implementation and use of various payload formats such as raw binary information
(e.g. MQTT message bodies), string contents (e.g. HTTP response bodies when the
Content-Type header indicated text data) or JavaScript objects such as dictionaries
that could hold arbitrary data for cases where there was no meaningful way to ex-
tract payloads from messages. The MessageDirection structure was used to relay
the message to the correct socket after it was processed by the pipeline.

Factories and Builders The requirement “F2 Network Stacks” implied a way of
initializing various objects that represent pipelines, sockets and FSMs, dependent
on configuration files loaded at runtime. As shown in figure 5.17, the abstract fac-
tory design pattern was used to provide an easy way to initialize pipes, filters, en-
coders and sockets by providing them with metadata used for object creation. An
IFactory interface exposed simple methods for registering IBuilders and building
objects. The generic type parameters O and T were placeholders for type specific
options (e.g. IPipeOptions and IFilterOptions) and the type of the created objects
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<<interface>> 
IFactory<O, T>

# use(string, IBuilder<O, T>): void

# build(IBuildOptions<O>): T

<<interface>> 
IBuildOptions<O>

+ builderName: string

+ options: O

<<interface>> 
IBuilder<O, T>

# build(O): T

<<interface>> 
BaseFactory<O, T>

# builders: Map<string, IBuilder<O, T>>

Use
Use

Use

FilterFactoryPipeFactory ServerFactory PipeBuilder FilterBuilder ServerBuilder

Figure 5.17.: A variation of the abstract factory design pattern was used to decouple the creation of objects
from their usage.

(e.g. IPipe and IFilter), respectively. The options types would contain informa-
tion that was used for creating individual instances, such as a pipe’s name or a
server socket’s address to listen on. The BaseFactory class implemented the IFac-

tory interface and held an internal hash-map that was used to register IBuilders by
name. Lastly, the IBuilder interface provided a method for initializing objects with
the given options, providing default values for constructor parameters. There were
static instances of factories and builders of pipes, filters and servers. For instance,
the global server-factory SERVER_FACTORY used the global TCP server builder
instance TCP_SERVER_BUILDER.

5.1.6. Insights Gained

The following insights were gained through the prototypical implementation. Some
resulted in questions relevant for the expert interviews that were to be held:

• Due to the Maximum Transmission Unit (MTU), large messages were bro-
ken into chunks that were transferred sequentially. This required the proxy
to work on streams of incoming data and reassemble messages from said
chunks. While individual MQTT messages would often be short enough to
be transmitted in a single TCP packet, other communication protocols such
as HTTP could yield messages that were several hundred kilobytes or more in
size (e.g. when downloading images). This also required the encoders to be
stateful as they had to load data of incoming packets into individual buffers
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until they could parse complete messages, introducing the need to initialize
one pipeline per device connected to the proxy application.

• Supporting multiple client devices was non-trivial as communication between
clients and servers was not necessarily connection-oriented (e.g. HTTP on the
application level or User Datagram Protocol (UDP) on the transport level).
Q1: Do penetration testers need to test multiple devices at the same time?

• In some cases, e.g. with WS data-frames, extending a message’s payload
resulted in its payload being split into multiple messages. This indirectly cre-
ated new messages that, depending on the exact protocol used, needed to use
generated values (such as an unique identifier) or context-specific informa-
tion (e.g. authentication tokens used in HTTP headers). Also, some libraries
would generate those values themselves and not define ways to specify those
manually.
Q2: Do penetration testers require exact control over the implementation of

protocols?

• Manipulating messages, automatically via scripting or by hand using third-
party integrations (e.g. to Burp Suite), could introduce latency to the commu-
nication.
Q3: Are there strict timing requirements during penetration tests?

• Many libraries offered high-level functions to the programmer while avoiding
exposure of low-level functionalities like crafting or parsing messages. Ex-
posing such functionalities would require dissecting and altering libraries on
a source-code level.

5.2. Interviewing Experts for Insights

Interviews may be an efficient way to get an expert’s opinion on something they
are proficient in. Thus, expert interviews were conducted to let security researchers
give insight into their everyday work and the challenges they face when working
with IoT and IIoT applications. The information and insights gathered in these
interviews were then used to verify various assumptions made during the design
and development of the prototype and derive additional requirements.

39



5. Understanding the Problem Space

5.2.1. Interview Guideline

An interview guideline (shown in appendix B) was created to keep focus on key
points during interviews so that interviewees would not stray too far from the rele-
vant points. The guideline also served as a checklist so the interviewer could make
sure that all questions and points that should be covered initially, were in fact cov-
ered by the end of the interviews. It was composed of three sections:

1. Experiences with IoT The answers to these questions would give insights into
what kind of applications the security researchers had worked on in the past. An-
swers to question 1.1. were of particular interest as they might represent what tech-
nologies were being examined by security researchers and may be popular in to-
day’s applications.

2. Processes in Everyday Life This section aimed to cover questions about the
processes and tasks security researchers perform during penetration tests of IoT
applications in their everyday life. Ideally, answers to those questions would show
the approaches taken and challenges faced during their work, uncovering potential
needs and underlying motivation.

3. The Future of IoT This section had security researchers assess what the future
of IoT may be like from their point of view. This required the interviewees to make
a critical assessment of the status quo.

5.2.2. Conducting Interviews

Interviews were conducted with six NVISO employees (Patrick Eisenschmidt, Cé-
dric Bassem, Théo Rigas, Oliver Nettinger, Pierre-Alain Mouy, Jonah Bellemans)
that all had worked on security assignments on IoT or IIoT applications in the past.
There is considerable variety in

• the experience they had in working on security assignments in general: all
interviewees had a strong background in cyber security that reached back
multiple years except one who was a working student at NVISO Labs (Belle-
mans).
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• the experience they have had in working on IoT/IIoT applications: two inter-
viewees worked on assessing IoT/IIoT applications only occasionally (Eisen-
schmidt, Mouy), one was part of a car manufacturer’s automotive security
team in the past (Nettinger) and two were part of NVISO Labs and worked
with smart devices on a regular basis (Bassem, Rigas).

• the focus of their everyday work: two interviewees were NVISO chief exec-
utives and switched to working on management tasks rather than security as-
sessments (Nettinger, Mouy), one was a working student finishing their mas-
ter’s thesis with a focus on legal aspects of IoT devices (Bellemans) and the
remaining three worked on security assessments in a variety of fields (Eisen-
schmidt, Bassem, Rigas).

The duration of the interviews varied from 45 minutes to two hours depending on
the amount and level of detail of information provided by the interviewees and the
number of times that the interviewer had to ask further questions.

Due to the COVID-19 pandemic, interviews were conducted remotely over Mi-
crosoft Teams and recorded for later review and analysis. All interviews were
conducted successfully, however some problems occurred: due to unstable inter-
net connections interviews were sometimes interrupted for up to 30 seconds, low
bandwidth and low microphone quality sometimes made making out specific words
and phrases very hard.

5.2.3. Interview Analysis

The answers interviewees gave to the various questions in the interview guideline
varied greatly in detail. The following paragraphs attempt to summarize the essen-
tial statements interviewees made, sorted by the sections of the interview guideline
and ending with conclusions drawn from the interviews.

1. Experiences with IoT Asked about the technologies they encountered in their
work, most interviewees stated that MQTT [11, 5, 38, 27] and HTTP [11, 5, 38, 27,
25, 6] were widely used in the smart applications they assessed. For IoT devices
they found that Espressif microcontrollers such as the ESP32 and ESP8266 were
used [11, 6]. Especially in cheap devices they found that custom protocols and in-
frastructure were used [5, 38, 6], whereas high-end devices usually used MQTT and
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HTTP and worked with well-known cloud infrastructures such as AWS, Microsoft
Azure or Google Cloud Platform. Most interviewees worked on Smart Home prod-
ucts [11, 5, 38, 25, 6] with one notable exception being Nettinger who worked on
Smart Cars [27].
Usually, there were no technical constraints for the interviewees when performing
security assessments. There were some non-technical constraints such as working
from a black-box perspective rather than working from a white-box perspective that
would allow evaluating more security aspects of a system in less time [11, 5, 38].
Depending on the client and the exact application that was to be tested, interviewees
said that they made use of either mobile lab environments [5, 38] or stationary lab
environments [11, 27, 25, 6]. Also, interviewees stated that they usually assessed
devices and applications individually.

2. Processes in Everyday Life Regarding the goals of their assessments, intervie-
wees would take on one of two approaches: The first was penetration testing [11, 5,
38], aiming to evaluate as many components of a system as they could during their
assessment. The second was red-teaming [27, 25, 5, 38] which aimed to get some
level of access, preferably privileged, to a device or server in order to take influence
on the application’s logic or exfiltrate data. The scope of their assessments was
usually defined by the client and could include testing of devices, applications and
firmware or performing source-code and cloud configuration reviews [11].
The high-level tasks carried out during assessments would generally be the same
across assessments: first, interviewees would inspect applications passively from a
black-box perspective without interacting with them. This could incorporate look-
ing for hardware interfaces on a device [5, 38], looking for open network ports [6],
reverse engineering Android applications and inspecting certain artefacts as mani-
fest files [11] and monitoring applications’ network traffic [6]. Nettinger stated that
when working with cars, fuzzing was a task often carried out against bus protocol
implementations because the devices implementing those protocols were often sup-
plied by third parties and source-code was usually not available [27].
The tools used by the interviewees were mostly dependent on the technologies and
protocols they worked with, such as Burp Suite for examining HTTP communica-
tion [11, 5, 38, 27, 25, 6]. However, some general tools were used for information
gathering, monitoring (Wireshark) and networking (such as socat6 and mitmproxy).

6Command-line based tool that is used for many networking tasks, such as forwarding network traffic [41].
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Bassem, Rigas and Mouy stated that they would occasionally implement their own
tools or scripts when they found that there either were no tools available that suited
their needs or those tools would not work [5, 38, 25]. According to Rigas, tools
were highly specific to custom setups and preparing them up for use could be more
challenging than actually using them [38]. Bassem, Rigas and Bellemans stated that
tools were often immature, making it difficult to work with them [5, 38, 6]. Speak-
ing of their automated tests performed on smart devices, Bellemans criticized that
automated tools often yielded inaccurate or incorrect results such as nmap reporting
a game-server running on a smart lightbulb [6]. Also, when manipulating commu-
nication of applications, interviewees generally were not interested in manipulating
metadata such as headers but focused on the messages’ payloads.

3. The Future of IoT When asked about the current challenges the interviewees
were facing working on IoT assessments, they gave very individual answers: Eisen-
schmidt expressed concerns about data protection and cloud environments being
a rather new technology that requires engineers to securely configure them [11].
Mouy and Eisenschmidt stated that protocols and frameworks became increasingly
complex and more and more devices interacted with each other, adding complexity
to the security assessments [25, 11]. Also, there were a lot of custom protocols
and frameworks that lacked proper tooling and were time-consuming to asses [6,
25]. When working on IoT assignments, clients often had a traditional view on the
assignments and occasionally wanted the testers to perform black-box tests only
although additional white-box tests would potentially help covering more compo-
nents and internals of applications [6, 5, 38].
Half of the interviewees stated that cloud computing will be more important and
present in the future [11, 27, 25]. They expect continued use of the comparatively
old but proven HTTP [5, 38] and the well-accepted MQTT [5, 38, 27]. Regarding
software development, they expect manufacturers of smart systems to involve IT
security more into their development process [5, 38, 27] as well as use standard-
ized frameworks [25, 5, 38]. However, they also stated concerns about the growing
complexity of frameworks and the uncertainty of which frameworks will eventually
gain wide acceptance [5, 38]. Regarding autonomous driving, Nettinger noted that
current discussions about legal topics (such as the question about which party is to
assume liability in case of accidents) will likely not come to an end anytime soon
[27]. Concerned about security and safety aspects of future IoT applications, Belle-
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mans expressed the need for smart applications to be labelled or certified and they
referred to the European cybersecurity certification framework that is being worked
on by the European Union Agency for Cybersecurity (ENISA) [6].

Conclusions The interviews yielded a set of both very interesting and relevant
insights into the interviewees’ work and fields of expertise. The following insights
served as a guide for further development of the proxy application:

• Smart devices often communicated via HTTP and MQTT. While the tools
for security assessments with HTTP were very mature, there was a perceived
lack of tools for MQTT.

• Often times, smart applications made use of proprietary protocols and infras-
tructure. While this was a fact the interviewees expect to be of less signifi-
cance in the future, it still was of greater significance then.

• Penetration testers usually did not intend to test the protocol implementations
used by applications but the contents transmitted over these protocols.

• Tools for working with specific protocols were often very immature and both
installation and usage involved a lot of work.

Also, the questions raised in section 5.1.6 were answered and could be used to
derive assumptions to take into account when creating a software design for a proxy
application:

Q1 The interviewees usually tested individual devices one at a time. Therefore,
an assumption can be made that the software design should not aim for testing
multiple devices at once.

Q2 Interviewees stated that during tests there is a strong focus on the message
payloads. They do not test protocol implementations and usually do not have
to manipulate protocol headers. Thus, the software design should aim to pro-
vide penetration testers with access to message payloads rather than protocol
headers.

Q3 According to the interviewees, they did not encounter strict timing require-
ments such as real-time communication during their assessments. As a result,
the software design should not take timing into account any may envision
mechanisms that potentially introduce latency (such as queueing messages).

These insights were translated into the following, new non-functional requirements:
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N4 Extensibility
To allow for future implementation of further communication protocols
the software shall be implemented in a modular fashion.

N5 Deployment
To allow the proxy application to be installed and used in a repeatable
and reliable way, the proxy application shall be distributed using a de-
ployment system.

5.3. Analysis of Existing Software

Existing software was examined and compared to see whether they could be mod-
ified and extended to fulfil the requirements worked out in sections 5.1.2 and 5.2.
Table 5.1 shows a comparison of popular software used for MITM attacks in infor-
mation security. As can be seen, some tools meet exclusion criteria such as being
incapable of crafting packets (e.g. Wireshark) or not being released under an Open
Source Software (OSS) license (e.g. BurpSuite). Protocol specific tools such as
mitmproxy, mProxy and IOXY usually do not consider support for further protocols
in their software design which makes implementing new protocols to these tools a
very challenging tasks. MITMf was not updated in years and lacks a clear doc-
umentation. The remaining tools (Scapy, Ettercap and bettercap) provide generic
interfaces for parsing and crafting packets and executing scripts on packets. How-
ever, none of these feature FSMs for dynamically changing the network stack used
for disassembling packets.
For these reasons, a decision was made to implement a new tool instead of extend-
ing an existing one.
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Name
Latest
Release

Implemented
in

Supported
Protocols

R W D OSS

Wireshark 2021-04-21 C Various F N N Y

BurpSuite 2021-05-26 Java HTTPS, WS F F F N

Scapy 2021-04-19 Python Various F F F Y

MITMf 2015-08-28 Python Various F F F Y

Ettercap 2020-08-01 C Various F F F Y

bettercap 2021-05-22 Go Various F F F Y

mitmproxy 2021-01-21 Python
HTTPS, WS,

TLS, TCP P P P Y

mProxy Pre-Releases only Go
MQTT,

MQTT/WS F F F Y

IOXY Source only Go
MQTT,

MQTT/WS,
MQTT/TLS

F F F Y

Table 5.1.: Comparison of existing software where R, W and D describe read, write and deletion capabil-
ities, respectively. F , N and P indicate full, no or partial functionality, respectively. Y and N
indicate whether a tool is released under an OSS license or not.
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Chapter 6

Conceptual Design

Building on the software design of the first prototype presented in section 5.1.3 and
the insights gained in section 5.1.6, two design concepts were worked out. The
following sections will detail components and principles of both concepts.

6.1. Design #1: Monolithic Proxy Application

This design concept is based on the general ideas presented in section 5.1.3 (e.g.
state-machines, network stacks and pipes) and employs a basic architecture shown
in figure 6.1.

System

Message IO

Global Statemachine

Site

IoT Device

Cloud Service Penetration 
Tester

Figure 6.1.: High-level component diagram of the proxy application concept

6.1.1. High-level Overview

As discussed in the previous chapter, the requirement “F2 Network Stacks” intro-
duces the need for dynamically initialized objects which in this concept is imple-
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mented by making use of the abstract factory pattern in the “Site” component (de-
picted in figure 6.2). This component allows for registering Factories that are used
to initialize objects. Similar to the implementation in the first prototype, factories
initialize objects using metadata supplied from a configuration file.

<<singleton>> 
Site

+ factories: Dict[str, List[IFactory]]

+ install_factory(IFactory) : void

+ build(str, any) : any

<<interface>> 
IFactory

+ productname: str

+ build(str, any) : any

Use

Figure 6.2.: A simple variation of the abstract factory pattern. Contrary to the design of the first prototype
in section 5.1.3, this variation does not specify the abstract type of the products that are built
as return types but as part of the meta data used for object creation.

Communication with other systems is encapsulated into the “Message IO”-package
shown in figure 6.3. Applications that are tested by penetration testers are con-
nected to sockets provided by the “Gateway” component and temporarily stored in
a message queue to be processed by the network stacks organized by the “Global
Statemachine”. Similar to the “Server” interface used in the first prototype, gate-
ways provide means of communicating with external systems and receiving and
sending messages. They are highly abstract and meant to be used for implement-
ing interfaces for any kind of communication protocols and technologies, such as
IP-based TCP and UDP communication but also other protocols such as USB, Blue-
tooth, ZigBee or KNX. It should be noted that the static view of the design is rather

Message IO

Gateway Message Queue

Figure 6.3.: The “Message IO”-package. The white boxes indicate ports for communication with outside
components.

simple due to its dynamic runtime behaviour: many instances and relationships are
only instantiated at runtime and not pre-determined. A schematic representation of
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the dynamic structure and interweaving of state-machines, network stacks and pipes
(in this concept called a “pipeline”) is shown in figure 6.4. This figure highlights

Gateway

Global Statemachine

State2State1 State3

Netstack X

Pipe1

...

Pipen

Nested Statemachine Y

State1 State2 State3

Netstack X2

Pipe1

...

Pipen

......

... ...

Figure 6.4.: An abstract representation of the runtime hierarchy of nested FSMs and network stacks. The
active states of the FSMs determine which network stacks are used, resulting in a chain of
FSMs and network stacks, referred to as a “pipeline”.

a series of active state-machines and network stacks which together constitute the
active pipeline.

Figure 6.5 illustrates the recursive nature of this concept processing (dequeued)
messages:

1. A state-machine F (initialized with the global state-machine instance) relays
messages M through its active state S’s network stack instance N .

2. In N , all of its pipes P process M until the end of N is reached (P does not
hold a reference to a succeeding pipe instance). If F holds a reference to a
succeeding FSM, F is set to this reference and the process continues from
step 1.
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Process messages up the pipelines Process messages down the pipelines

M

Set F to Global state-
machine

Set S to F's active state

Set N to S's network
stack

Set P to N's first pipe

Process M with P

Is P the last
pipe of N? Set P to P's next pipe

no

yes

Does F have
a next state-

machine? yes

Set F to F's next
statemachineno

Set P to P's previous
pipe

Process M with P

Is P the first
pipe of N?no

yes

Set F to F's previous
statemachine

Set P to N's last pipe

Set N to S's network
stack

Set S to F's active state

Does F have
a previous

state-
machine?

yes

no

M

Diagram Legend 
 
F State Machine
S State
N Network Stack
P Pipe
M Message

Figure 6.5.: Message processing through an architecture of nested FSMs and network stacks

3. If N does not hold a reference to a nested FSM, the end of the network stack
is reached and the direction of traversing the network stack is reversed.

4. P is set to N ’s last pipe instance and M is processed by P until the start of
N is reached (i.e. P does not hold a reference to a preceding pipe instance).

50



6. Conceptual Design

If F holds a reference to a preceding FSM instance, F is set to this reference,
N is set to F ’s network stack reference and the process continues from step
4.

5. If N does not hold a reference to a preceding FSM, the beginning of the whole
pipeline is reached and F is the global state-machine.

StateMachine

+ name: string 
+ states: Dict[string, State]
+ currentstate: State
- transitions: Transition[]
+ prevmachine: StateMachine

+ evaluate(StateContext): bool

State

+ name: string 
+ machine: Statemachine
+ netstack: NetStack

Transition

+ src: State 
+ dst: State
+ rule: IRule 

+ evaluate(StateContext): bool

<<Interface>> 
IRule

+ name: string 

+ evaluate(StateContext): bool

<<Interface>> 
IChainRule

+ name: string 
+ rules: IRule[]

AndRule OrRule

ScriptRule

+ script: Script 

+ evaluate(StateContext): bool

NetStack

+ first: IPipe 
+ last: IPipe

<<Interface>> 
IMemorizing

+ memory: Dict 

+ reset(): void

IPipe 

Figure 6.6.: StateMachines used rules to determine whether state changes should take place. IChain-
Rules, AndRules and OrRules allowed to combine multiple rules and provided a way to specify
logic using OR and AND operators.

6.1.2. State-Machines

The classes related to the state-machine component are shown in figure 6.6: StateMa-

chines hold a set of States and Transitions. In order to change states, state-machines
evaluate a context by checking each of their transitions for whether their condi-
tions for transition are met or not. This context is an aggregation of the memory of
each state-machine and their active states in the active pipeline. Transitions are de-
fined by a source state, destination state and an IRule that evaluates a given context.
Rules can be concatenated with logical AND or OR operators and are designed to
be scripts that operate on the given context. This allows the creation of nested rules
such as the following one:

changeToWS(c) = AND(clientUpgrade(c), serverUpgrade(c))
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In this example, a transition with the above rule would evaluate to true and trigger
a state transition in a state-machine when the aggregated memory c of all state-
machines and their active states of the active pipeline indicated that an HTTP re-
quest was detected that requested an upgrade to the WS protocol (for instance,
clientUpgrade would look for an entry clientUpgradeRequested in c and evaluate
its contents) and that an HTTP response was detected that confirmed the upgrade
request. This would allow a state-machine to detect upgrades of HTTP communi-
cation to the WS protocol.
States hold a “NetStack” which in turn encapsulate a series of connected pipes,
holding references to this series’ first and last elements.

<<interface>> 
IAddressablePipe

+ address: string

BasePipe

<<abstract>> 
RelayPipe

+ target: IRelayTarget

+ source: IAddressablePipe

+ receive(Message, ProcessingDirection): ProcessingResult

<<interface>> 
IRelayTarget

~ receive_relayed(RelayPipe, Message, ProcessingDirection): ProcessingResult

GatewayPipe

- localRelay: RelayPipe

- remoteRelay: RelayPipe

+ receive(Message, ProcessingDirection): ProcessingResult

+ receive_relayed(RelayPipe, Message, ProcessingDirection): ProcessingResult

<<interface>> 
IGateway

- gatewaypipes: List[GatewayPipe}

+ registerGatewayPipe(GatewayPipe)

+ unregisterGatewayPipe(GatewayPipe)

+ start()

TcpGateway

TcpPipe

Use

Figure 6.7.: By introducing Gateways, GatewayPipes and RelayPipes, multiplexing pipes could be imple-
mented.

6.1.3. Gateway

The gateway component is defined by the “IGateway” interface shown in figure
6.7. It is designed to be run as a service in a separate thread that interacts with
communication interfaces on machines (i.e. Bluetooth dongles or Ethernet inter-
faces). During operation it accepts incoming connections CI and creates its own
respective outgoing connections CO to remote servers. Pairs of connections CI and
CO are held in technology-specific pipe implementations and encapsulated in indi-
vidual “RelayPipe” instances. Those RelayPipe instances are assigned to “Gate-
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wayPipe” instances. Improving on the first prototype’s design, the GatewayPipe
acts as a multiplexing pipe that accepts messages originating from the two encap-
sulating “RelayPipes” that act as two communication ports (e.g. the client device
and the cloud server of scenario #2 described in section 5.1.1) that hold information
about the address of their communication peers in their address field (e.g. an IP
address of the remote peer). For instance, two TCP client sockets can be handled
by two “TcpPipes” (that inherit from the RelayPipe class), allowing TCP packets
to be routed into the pipeline via a GatewayPipe. Once messages are processed and
sent back up the pipeline to a GatewayPipe, the GatewayPipe can find the correct
RelayPipe to relay the message to by comparing their addresses with the message’s
“MessageDirection” information.

<<interface>> 
IPipe

+ previous: IPipe

+ next: IPipe

+ name: string

~ receive(Message, ProcessingDirection): ProcessingResult

BasePipe

- netstack: NetStack

+ receive(Message, ProcessingDirection): ProcessingResult

<<interface>> 
IEncoder

+ encodings: Coding[]

+ decodings: Coding[]

+ encode(Message): ProtocolData, EncodingResult

+ decode(Message): ProtocolData, EncodingResult

<<interface>> 
ITrackablePipe

+ id: number

~ track(): void

~ untrack(): void

<<singleton>> 
PipeDirectory

- pipes: Dict[number, ITrackablePipe]

+ track(ITrackablePipe): number

+ untrack(ITrackablePipe): bool

ProcessingPipe

- encoder: IEncoder

- processor: IProcessor

+ receive(Message, ProcessingDirection): ProcessingResult

Coding

+ src: string

+ dst: string

<<enum>> 
 EncodingResult

Success

Incomplete

Error

Use

<<enum>> 
 ProcessingDirection

Down

Up

Any

<<enum>> 
 ProcessingResult

Success

Incomplete

Drop

Back

Error

<<interface>> 
IProcessor

+ processingDirection: ProcessingDirection

+ willProcess(ProcessingDirection): bool

~ process(Message, ProcessingDirection, StateContext): Message, ProcessingResult

Use

Use

ScriptProcessor

+ script: Script

Figure 6.8.: The interfaces, classes and enums used to represent pipes, their specializations and as-
sociated classes. This iteration separates BasePipes from IEncoders and IProcessors so
BasePipes only implement routing of messages.

6.1.4. Pipes

Building upon the approach of routing and processing messages via pipes discussed
in section 5.1.3, this design concept addresses some inconsistencies of the former
design and adds needed flexibility. As shown in figure 6.81, the “IPipe” interface is
reused from the first prototype and extended by the “ITrackablePipe” interface that
adds a unique identifier to pipes. This enables the application to easily locate pipes

1A larger printout A.1 can be found in the appendix.
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by looking up their identifiers in the “PipeDirectory”, allowing to interact with and
inject messages into individual pipes directly.
A “BasePipe” implements the ITrackablePipe interface as well as simple routing
logic for forwarding messages up and down pipelines. However, only “Process-
ingPipes” actually perform any kind of operations on messages directly: they can
employ “IEncoders” for (de-)serialization and “IProcessors” for transformation of
messages. Contrary to the design concept of the first prototype, IEncoders need to
specify which data formats they support as source and target encodings. This allows
the implementation of multiple IEncoders for the same protocol that work with dif-
ferent source or target data formats. For example, some IEncoder may only provide
decoding functionality for raw binary data into HTTP messages with raw binary
bodies while another implementation provides functionality to encode strings into
HTTP message bodies. In the first prototype’s design, the very concept of filters
was only vaguely described and lacked a clear and concise interface. This issue is
resolved in this next iteration of the design concept:

• Filters are renamed to “IProcessors” (conveying the purpose and meaning of
the interface in its name).

• IProcessors specify a “ProcessingDirection” that determines whether mes-
sages shall be processed on their way down or up a pipeline or in any direc-
tion, effectively granting control over applying transformations on messages.
This can be helpful when transformations shall only be applied in one direc-
tion or maybe only once in a pipeline, like replacing the contents of the body
of an HTTP message.

• An IProcessor can apply logic to messages in its process method that also
receives the pipeline’s context. The returned “ProcessingResult” indicates
success or failure of the operation or whether the IProcessor requests dropping
a message or sending it back up the pipeline.

While there are many opportunities for specific implementations of the IProcessor
interface, one general implementation is envisioned by the design concept: a simple
“ScriptProcessor” allows penetration testers to supply scripts that are executed at
runtime and allow transformation of messages. This directly fulfils the requirement
“F5 Scripting”.
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Message

+ id: number

+ direction: MessageDirection

+ protocol: string

+ timestamp: time

+ history: ProtocolData[]

MessageDirection

+ source: string

+ destination: string

<<interface>> 
ISource

+ type: PayloadType

+ data: any

~ merge(ISource[]): ISource

BinarySource TextSource ObjectSource

<<enum>> 
SourceType

Binary

String

Object

Any

ProtocolData

+ direction: MessageDirection

+ fields: Dict[string, any]

+ source: ISource

+ protocol: string

Figure 6.9.: The data-structures used to represent messages, their meta-data and payloads.

6.1.5. Messages

Compared to the first prototype’s design, the data-structures that represent messages
are mostly unchanged (as shown in figure 6.9). However, during implementation
and testing of the first prototype it became apparent that in some cases “historical”
information about messages was required. This iteration of the design adds a list of
“ProtocolData” instances to messages that specify information about the protocol,
message headers and the payload (“ISource”). IProcessors and IEncoders append
newly transformed or (de-)serialized ProtocolData instances to messages. So over
time, a message contains records of all those operations performed on it. This
information can be useful in a number of cases like serialization: when a message
is deserialized (e.g. the payload of a WS message is extracted) on its way down
a pipeline, important information about the formerly encapsulating protocol is lost
(such as the WS frame’s flags). When a message is serialized on its way back up a
pipeline, an IEncoder would have to generate this information or try and deduce it
from the message, which is not always possible. However, since it can access the
messages’ history and former ProtocolData, it can read the original information and
use this for serialization.
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6.2. Design #2: Distributed Proxy Services

The design shown in section 6.1 was an iteration of the design worked out for the
first prototype in section 5.1.3 and addressed some fundamental, architectural flaws
and aimed for better flexibility and more meaningful interface definitions. How-
ever, it did not address other problems that were encountered during the implemen-
tation of the first prototype: constraints in platform, framework and programming
language compatibility and flexibility. As a consequence of these constraints, the
proxy application needed to be developed as a monolithic application. Therefore,
each extension, like additional IEncoders that added support for new protocols, was
required to be implemented in the same programming language and run on the same
platform and as part of the same process as the proxy application. This also effec-
tively limited the available selection of libraries. Another potential problem of the
former design concept was the tight coupling of pipes and the deeply nested struc-
ture and hierarchy of state-machines, pipes and network stacks. While this archi-
tecture allowed to implement routing messages through composition (by design), it
greatly added to the runtime complexity and made debugging the application sig-
nificantly harder.

System

Message IO

PipelineRepositoy

Site

Registry

IoT Device

Cloud Service Penetration 
Tester

RemoteUnit RemoteUnit

Figure 6.10.: A component diagram showing the external systems communicating with the system and
their connection to internal components.
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6.2.1. Overview

Another iteration of the design (shown in figure 6.10) was made to address these is-
sues. While the “Message IO” and “Site” components are left unchanged, the global
state-machine is replaced by the “Registry” and “PipelineRepository” components
that allow for de-centralized and more controlled processing of messages.

<<RemoteUnit>> 
Unit 1

<<Feature>> 
Feature 1

<<Feature>> 
Feature n

...

<<RemoteUnit>> 
Unit n

<<Feature>> 
Feature 1

<<Feature>> 
Feature n

...
...

<<singleton>> 
Registry

Figure 6.11.: In this concept, n separate Units can be registered at a central Registry. Units may provide
an arbitrary amount of Features.

6.2.2. Registry and Units

To implement de-centralized processing of messages, a central registry is required
to register remote units (shown in figure 6.11). As can be seen in figure 6.12,
the central registry is represented by the “IRegistry” interface that allows remote
units to register themselves and allows the PipelineRepository to request sessions
to units that implement requested features. Remote units can be remote machines
that implement the “IPort” interface that provides a list of “IUnit” instances. An IU-
nit implements one or more “Features”, such as specific (de-)serialization or other
processing, and effectively provides IEncoder and IProcessor functionalities. This
transforms formerly direct calls to IEncoders and IProcessors to Remote Procedure
Calls (RPCs). Since IEncoders and IProcessors can be stateful, IUnits initialize
them in “ISessions” for each requested feature. The IRegistry and IPort interfaces
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<<interface>> 
IRegistry

+ ports: IPort[]

+ register_port(IPort): void

+ get_session(Feature): ISession

<<interface>> 
IUnit

+ features: Feature[]

+ sessions: ISession[]

+ create_session(Feature) : ISession

+ terminate_session(ISession) : bool

EncodingFeature<<abstract>> 
Feature

+ type: string

+ name: string

+ meta: Dict ProcessingFeature

Use

<<interface>> 
IPort

+ units: IUnit[]

+ register_unit(IUnit) : void

+ get_unit(Feature) : IUnit

<<interface>> 
ISession

+ feature: Feature[]

+ process(Message, ProcessingDirection, StateContext) : Message, ProcessingResult

Use

Use

Figure 6.12.: Visualized in this diagram, the distributed implementation and central registration of features
is the core idea of the Registry and Unit components.

are explicitly kept rather simple and unspecific to the exact means of communica-
tion between them so that they can be implemented in various ways, making use of
various Inter-Process Communication (IPC) techniques.
Also, to transmit data between the proxy application and its remote units, this data
needs to be (de-)serialized and a format for serialization has to be chosen.

6.2.3. PipelineRepository

The PipelineRepository component holds information about all configured pipelines
(that is a flattened representation of the hierarchically configured state-machines and
network stacks) and their contexts. This allows to remove the pipes from the soft-
ware architecture, providing better traceability of messages throughout the system
and makes debugging the high-level application logic more accessible. Also, orga-
nizing network stacks and state-machines in one central place encourages creation
of means to interface with these mechanisms such as REST-APIs that let penetra-
tion testers inspect the message queue and ongoing processes.
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6.2.4. State of the Design Concept

This design concept promises to solve severe issues of the previous design itera-
tion shown in section 6.1 and already defines some very high-level components.
However, due to time constraints some components’ designs were not finished and
require further work on specifics. For this, certain questions need to be answered
and translated into the design:

• PipelineRepository: How exactly is the hierarchy of state-machines and net-
work stacks flattened? How is this flattened hierarchy represented in data-
structures? How are instances of individual state-machines and network stacks
initialized and organized for individual gateway-connections?

• ISession: How is information relevant to IEncoder and IProcessor instances
(such as ScriptProcessors’ Script instances) passed to remote units?

• IRegistry/IPort: How exactly are RPCs performed? Are there mature and
appropriate frameworks that provide RPCs implementations?

6.2.5. Comparison of Both Designs

Both design concepts discussed in the previous sections, the monolithic and the
distributed concept, promise to solve specific problems. The following paragraphs
compare both concepts on the base of a set of core design aspects:

Software architecture The monolithic concept suggests a centralized and self-
contained design that combines the high-level business logic of a proxy-application
with low-level tasks such as (de-)serialization of various protocols. It is designed to
be run on a single machine.
In contrast to this, the distributed concept separates the high-level business logic
(like routing messages) and low-level tasks as part of a client-server model: the
high-level logic is implemented in the central proxy server while low-level tasks
are isolated into separate remote services. These services can either be run on the
same machine the proxy server runs on or on external machines. Through dynamic
creation and registration of remote service instances, this concept also implements
scalability. Since there is no restrictions to the programming languages, platforms
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or frameworks used by remote services, the concept also embraces platform com-
patibility.

Complexity The reliance on deeply nested data-structures has a high impact on the
complexity of the monolithic concept at runtime. This makes debugging an imple-
mentation of this concept significantly harder and more time-consuming. However,
adding new extensions to this concept becomes a comparatively easier task as inte-
gration of such new extensions only takes place on a source-code level.
As opposed to this, the distributed approach simplifies the high-level tasks such
as routing messages by introducing distributed components that allow traceability
and thus establish transparency. The offloading of protocol implementations into
logical units that are accessed via IPC however contribute to a more challenging de-
ployment of the application. Also, due to their distributed nature, debugging these
remote units can introduce further problems (e.g. connection losses and high laten-
cies) and requires a more sophisticated and complex testing environment than the
monolithic concept.

Maturity Some of the core components of the monolithic concept were already
tested and proven by the first prototype. For instance, linked pipes proved to be an
effective means to route and process messages up and down a processing pipeline.
However, due to time-constraints, other core concepts such as the state-machines
could not be tested. Regarding completeness, it is noteworthy that this concept’s
interfaces are well-defined.
Contrary to this, the distributed concept is not finished and requires further work to
clear up a number of essential questions before it can be completed. Also, the pre-
viously proven effective idea of using pipes for routing and processing is removed
in the distributed approach. This denies the approach any effectiveness acquired
through previous design iterations.
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Chapter 7

Implementing the Modular Proxy

Application

This chapter covers an exemplaric implementation of the monolithic concept that
was worked out in section 6.1, starting with formally describing the goals and con-
straints of this implementation in section 7.1. Afterwards, an overview and com-
parison of available and suitable tools for the task is performed in section 7.2. The
chapter concludes with details about the implementation of individual components
in section 7.3, describing how specific challenges were overcome.

7.1. Goals and Constraints

The goal of this thesis’ implementation was to implement the “Monolithic Proxy
Application” design concept described in section 6.1 to a maturity level that allowed
to test its usefulness and effectiveness in the testbed described in section 5.1.4 that
aimed to represent scenario #2 “IoT Cloud Application” discussed in section 5.1.1.
Thus, a focus was set on implementing a vertical prototype that featured important
core components (such as factories, state-machines and network stacks) and a set
of exemplaric protocol implementations (HTTP, WS and MQTT). Similar to the
first prototype discussed in section 5.1, this prototype was a proof-of-concept im-
plementation and neglected quality attributes such as usability and performance.
The prototype had the working title “net-riot”, which indicated that this was a net-
working tool and was to be used in the IoT context.

61



7. Implementing the Modular Proxy Application

7.2. Tool Selection

To choose the tools for implementing the design concept, a list of requirements for
tools was inferred from the software requirements discussed and expert interviews
shown in chapter 5:

T1 Scripting: The tool must provide scripting capabilities that allow penetration
testers to execute complex scripted operations on messages.

T2 Libraries: In order to avoid custom implementation of the HTTP, WS and
MQTT protocols, the tool must provide a rich set of libraries that can be used
to work with said protocols.

T3 Deployment: To allow the prototype to be installed in an uncomplicated way,
the tool must provide or support mechanisms that simplify deployment, such
as code compilation and static linking of dependencies or containerization.

T4 Accessibility: The tool must be powerful and complex enough to solve the
software requirements and implement the design concept, but it must also
feature a “barrier or entry” that is low enough so extending the application is
feasible for open source developers.

Regarding the selection of a suitable programming language, it was found that
Python satisfied all of these requirements:

• Python is a free, open source and general purpose programming language that
was first released in 1991 and is being continuously improved and updated.

• The built-in exec1 function provides execution of arbitrary Python code at run-
time. Although it is infamous for its security implications, it is very suitable
for scripting.

• The Python Package Index (PyPI) is a public repository of more than 300.0002

Python packages that can be installed using the pip command-line tool. There
are numerous packages that implement the protocols WS, MQTT and HTTP.

• Python supports multiple ways to deploy projects, including packaging projects
into executable files3 and containerization4.

1https://docs.python.org/3/library/functions.html#exec
2Based on PyPI’s statistics: https://pypi.org/
3https://packaging.python.org/overview/#bringing-your-own-python-executable
4e.g. using Docker https://hub.docker.com/_/python/
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• Its comparatively simple syntax and its design philosophy that values accessi-
ble code higher than performance5 encourage readability and maintainability
in Python projects. When implemented, this makes Python an accessible pro-
gramming language. Also, its optional static typing allows to omit redundant
type information for simple methods and to provide explicit type information
for complex and shared pieces of code like algorithms and interfaces.

Git was used for version-control and Microsoft Visual Studio Code was the Integrated
Development Environment (IDE) used for implementation.

7.3. Individual Components

The following sections discuss especially challenging aspects of net-riot’s imple-
mentation, which problems were encountered and how they were solved.

7.3.1. Gateways

The protocols used in scenario #2 (HTTP, WS and MQTT) are used on top of
TCP. Therefore, net-riot implemented a TCP-Gateway that allowed it to create TCP
server sockets to listen on for incoming connection requests. For incoming connec-
tions CI, respective outgoing connections CO were initialized and connected to a
preconfigured remote server. For each of those connections, “TcpPipe” instances
PI and PO were initialized that ran in separate threads and accepted incoming pack-
ets. The gateway then initialized two “TcpGatewayPipe” instances with PI and PO

that routed messages originating from the TcpPipes into the pipeline and from the
pipeline to the correct TcpPipe instance.
Messages that originated from gateways were temporarily stored in a queue so that
only a single message was processed in the pipeline at any given time. It was found
that if multiple messages were processed simultaneously, the global state-machine
could change states while a message was still being processed in a then inactive
state. This resulted in this state’s network stack being left unconnected and un-
able to route the message back up the pipeline. For the same reason, net-riot only
supported one single connection.

5Described in 19 aphorisms in “The Zen of Python” (https://www.python.org/dev/peps/pep-0020/)
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7.3.2. Encoders

For each of the protocols used in scenario #2, net-riot implemented a separate IEn-
coder.

HttpEncoder For HTTP, no library was found that parsed HTTP requests or re-
sponses into low-level representations that did not discard essential information.
However, since HTTP is a comparatively simple, text-based and stateless protocol,
a custom IEncoder was implemented that parsed HTTP requests and responses from
raw binary data and allowed to assemble requests and responses from processed
messages. For assembly, the implementation used the HTTP header information
contained in a message’s “history” field that held the headers that were parsed when
the message was first parsed by this encoder. One practical pitfall of the custom
implementation was the “Content-Length” HTTP header that indicated the num-
ber of bytes contained in an HTTP request body or HTTP response body. Systems
that parse HTTP messages (such as web-servers and browsers) use the value of the
“Content-Length” header to read the indicated number of bytes from a TCP stream
and associate it with the parsed headers. If the length of a message body is modified
by a proxy, the “Content-Length” header indicates the wrong number of bytes to
read: this will either result in reading too few bytes (thus, discarding information)
or reading too many bytes rendering future requests malformed. To solve this issue,
the custom encoder provided the configurable flag recalculateContentLength that,
if set to true, dynamically calculated the value of the “Content-Length” header to
reflect the actual length of bytes contained in the message’s BinarySource.

WsEncoder The library used for WS implementation was “websockets”6. It of-
fered methods for parsing (framing.Frame.read) and assembling (framing.Frame

constructor) WS frames. These functions worked fine for regular WS frames. How-
ever, to save bandwidth, some WS client and server implementations make use
of PMCE. The use of PMCE is indicated by the “rsv1” bit of WS headers being
set to true. While the library implemented PMCE (extensions.permessage_deflate.

PerMessageDeflate) and using the extension worked on the first messages of a WS
connection, it would fail to correctly compress messages after it processed a number
of messages, causing the remote WS clients and servers to terminate the connection.
It was found that the PMCE implementation was stateful and not reset after being

6https://github.com/aaugustin/websockets/, commit 6b5cbaf41cdbc9a2074e357ccc613ef25517dd32
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used. This issue was solved by initializing new PerMessageDeflate instances per
WS frame assembly.

MqttEncoder For (de-)serialization of MQTT messages, the library “hbmqtt”7

was used in net-riot. The library implemented individual classes for each MQTT
message type and provided methods for parsing (from_stream) and assembly (to_

bytes) of packets. However, the library did not provide any method that chose the
correct class for (de-)serialization of a given binary buffer or processed message.
Therefore, this functionality was implemented in net-riot: the MqttEncoder defined
a dictionary that mapped MQTT message types to a tuple of classes (Packet, Vari-

ableHeader and Payload) provided by the library and attempted to parse the basic
MQTT message header of a binary buffer. This header included the MQTT message
type that was then used to look up the correct classes for parsing in the dictionary.
When MQTT messages were re-assembled by the MqttEncoder, it extracted the
message type from the parsed header (that was stored in the message’s “history”
field) and used this to look up the correct classes for serialization in the dictionary.

7.3.3. Scripting

In order to allow execution of scripts on messages, net-riot implemented the “Script-
Processor” discussed in section 6.1. This IProcessor implementation used Python’s
built-in exec8 function for executing arbitrary Python code (shown in listing 7.1).
The function allows the caller to define the available objects of the local and global
scopes in the called code. This mechanism was used to pass the message instance,
processing direction, context and “result” object to the script in the local scope. The
ProcessingResult values were passed to the script in the global scope which allowed
to script to assign one of these values to the “result” object in the local scope. Af-
ter execution, the “result” value was evaluated and returned by the ScriptProcessor.
This effectively enabled scripts to:

• Read and write fields and payloads of messages.

7https://github.com/beerfactory/hbmqtt/, commit 31165fb0e827925417f99a7b1f475a9d67e1c72f
8Python’s exec function and similar functions of other programming languages and frameworks that allow

code execution are infamous for code injections and pose a security risk. However, this risk was tolerated
for this prototype as it is designed and intended to be run in a controlled environment.
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• Read and write the active pipeline’s context and thus, its state-machines’
memory. This could be used to trigger state transitions.

• Control whether messages were processed further, being immediately sent
back up the pipeline, being dropped or ignored.

class ScriptProcessor(IProcessor):
def __init__(self, script: Script, inDirection: ProcessingDirection =

ProcessingDirection.ANY):
super().__init__(inDirection)
self._script_ = script

def process(self, msg: Message, direction: ProcessingDirection, context:
StateContext) -> Tuple[Message, ProcessingResult]:
_locals = {’msg’: msg, ’direction’: direction,

’res’: ProcessingResult.SUCCESS,
’context’: context}

_globals = {
’SUCCESS’: ProcessingResult.SUCCESS,
’ERROR’: ProcessingResult.ERROR,
’INCOMPLETE’: ProcessingResult.INCOMPLETE,
’DROP’: ProcessingResult.DROP,
’BACK’: ProcessingResult.BACK,

}
try:

exec(self._script_.body, _globals, _locals)
except Exception as e:

print(f’Script error: {str(e)}’)
return (_locals[’msg’], ProcessingResult.ERROR)

return (_locals[’msg’], _locals[’res’])

Listing 7.1: The ScriptProcessor implementation of net-riot using Python’s built-in exec function.

For net-riot to support MQTT communication that was tunnelled via WS it had to
detect upgrades of HTTP connections to WS. This was achieved by ScriptProces-
sor instances that executed scripts that examined the HTTP communication and set
values in the memory of specific state-machines using the context that was sup-
plied to them. Listing 7.2 shows the script that detected a server’s HTTP response
to an upgrade to WS: if there was an “Upgrade” header with the value “websock-
ets” and if the status code of the response was 101, the key “serverUpgrade” of the
nested state-machine “http” was set to True. If any of these checks failed, it was
set to False. This script worked in conjunction with another script that performed
similar checks to detect a client’s request to upgrade the connection. The “http”
state-machine used “ScriptRules” that evaluated the value of the “serverUpgrade”
key and triggered a state transition if both a client’s upgrade request and the server’s
upgrade response were detected.

def process(msg, context):
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_upgrade = msg.latest_data.fields.get(’Upgrade’)
_status = msg.latest_data.fields.get(’::Status’)
_upgradeToWs = _upgrade.lower() == ’websocket’ if _upgrade else False
_status101 = _status.find(’101’) != -1 if _status else False
context.memory[’http_to_ws’][’http’][’serverUpgrade’] = _upgradeToWs and

_status101
return SUCCESS

res = process(msg, context)

Listing 7.2: The script net-riot used to detect upgrades of HTTP connections to WS.

7.3.4. Configuration Parsing and Building

The requirement “F2 Network Stacks” mandated the capability to read a configu-
ration file at runtime and initialize the therein specified hierarchy of state-machines
and network stacks.

JSON Configuration and Schemas For formal specification and representation of
state-machines and network configurations, net-riot made use of the JSON format.
In over 600 lines of code, a JSON schema was defined that specified the structure
and types of net-riot configuration files. JSON and JSON schema were chosen over
alternatives such as XML and YAML due to their simple syntax, flexibility and
powerful features (such as definitions).

<<singleton>> 
Site

+ factories: Dict[str, List[IFactory]]

+ nrc: NetRiotConfig

+ install_factory_type(Type)

+ install_factory(IFactory)

+ build(str, Any) : Any

Dict[str, Any]

<<interface>> 
IFactory

+ productname: str

~ build(Site, Any) : Any

<<interface>> 
IBuilder

~ buildnetstack(str) : NetStack

~ buildstatemachine(str) : NetStateMachine

Use
Use

NetRiotConfig

+ gateway: IGateway

+ netstacktemplates: Dict[str, BuildInformation]

+ statemachinetemplates: Dict[str, BuildInformation]

+ globalstatemachine: NetStateMachine

+ buildnetstack(str) : NetStack

+ buildstatemachine(str) : NetStateMachine

BuildInformation

Alias

NetStackUse

NetStateMachineUse

Figure 7.1.: The implementation of the variant of the abstract factory pattern discussed in section 6.1. The
Site component and IFactory instances recursively call each other to create and composite
object instances.
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Factories, Builders and Templates The “Site” component was briefly discussed
in section 6.1 and envisioned as an implementation of the abstract factory pattern.
Figure 7.1 shows net-riot’s implementation of the Site component and its associated
interfaces and classes. The Site component holds a dictionary that maps product-
names to factories. In turn, factories can instantiate objects such as pipes, gate-
ways and state-machines (each differentiated by distinct names). Listing 7.3 shows
a simple factory implementation that is used to instantiate “ScriptRule” objects.
However, prior to calling the constructor of the ScriptRule class, it needs to acquire
a “Script” instance. It does so by requesting the Site to build a Script instance with
the supplied information. In turn, the Site looks up the correct factory to use for
instantiating the requested Script instance and calls it. Thus, factories can recur-
sively request further objects to be built by the Site while they themselves provide
the functionality to produce a single product each.
class ScriptRuleFactory(IFactory):

def __init__(self) -> None:
super().__init__(RULE_SCRIPT)

def build(self, plant: Site, obj: Dict[str, Any]) -> Any:
_scriptobj = obj[’config’]
_name = obj[’name’]
_script = plant.build(SCRIPT, _scriptobj)
return ScriptRule(_name, _script)

Listing 7.3: A simple factory that requested the build of a “Script” instance to instantiate a “ScriptRule”.

The “NetRiotConfig” class implements further logic to net-riot that allows to dy-
namically instantiate whole state-machines and network stacks. It does so by sav-
ing the configured state-machines and network stacks as templates and passing them
to the Site to build. For instance, net-riot’s configuration file may specify a state-
machine by the name of “http_to_ws” that is specified to be used as a nested FSM of
a state “entry” of the global state-machine. When the global state-machine is built
and an instance of the nested FSM is requested, the Site component calls NetRiot-
Config’s buildstatemachine method and supplies the name “http_to_ws”. In turn,
NetRiotConfig calls the Site component’s build function and supplies the template
of the requested state-machine.
Also, net-riot used Python’s “inspect”9 package to dynamically acquire all types of
implemented factories and register them in the Site instance (shown in listing 7.4).
import inspect
import parsing

9Python’s inspect package provides functionalities that allow examination of code at runtime, similar to “re-
flection” packages present in other programming languages such as Java and C#.
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from py_linq import Enumerable

factory_types = Enumerable([m for _, m in inspect.getmembers(parsing)])\
.where(lambda m: inspect.isclass(m) and not inspect.isabstract(m) and parsing.

factory.IFactory in inspect.getmro(m))\
.to_list()

for factory_type in factory_types:
parsing.SITE.install_factory_type(factory_type)

Listing 7.4: Dynamic registering of all factory implementations.
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Chapter 8

Evaluation and Lessons Learned

This chapter attempts to evaluate the work the proxy application and discuss what
challenges were encountered and what were the lessons learned from those. The
project timeline will allow a quantitative overview of the project progression and
show what parts of the project slowed down progress. Then, an overview of the
qualitative aspects of the deliverables will discuss the maturity of the design con-
cepts presented in chapter 6 and the implementation of the monolithic design in
chapter 7 and which parts reached a satisfactory level. Lastly, this chapter will
present the lessons learned during this work.

8.1. Quantitative Overview: Time Management

Comparing the planned thesis schedule to the actual course it has taken, this section
discusses how the intended plan was implemented and changed at certain places.
Also, it will examine the causes of the delays during development.

8.1.1. Project Timeline

Table 8.1 shows the initially planned thesis schedule divided into four phases, laying
out the course of the thesis over a span of 24 weeks.

1. Preparation The initial phase covered preparation tasks for further work on
the thesis. Literature research on the topics covered and touched in this thesis was
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Phase / Task Duration

1. Preparation 4 weeks (16, 66%)

Literature Research 1 week
Expert Interviews 1 week
Testbed Configuration 2 weeks

2. Prototype 7 weeks (29, 16%)

Prototype Conception 2 weeks
Prototype Implementation 4 weeks
Expert Feedback 1 week

3. Functional Prototype 7 weeks (29, 16%)

FP Conception 2 weeks
FP Implementation 4 weeks
Expert Feedback 1 week

4. Finalization 6 weeks (25%)

MQTT Case Study 2 weeks
Thesis Finalization 4 weeks

Total 24 weeks

Table 8.1.: Initially planned schedule for the thesis
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carried out. Related work on IoT and ICS security analysis (as discussed in chapter
2) was of special interest as those showed what approaches had been taken to assess
security implementations. Also, a testbed (discussed in section 5.1.4) for running
the proxy application was built. A decision was made against conducting expert
interviews before implementing a first prototype on the assumption that practical
experience with the subject matter would benefit the expert interviews. The fact
that a number of important questions arose from work on the first prototype later
proved this decision to be correct. Performing the literature research and building a
testbed was completed within the intended schedule of three weeks.

2. Prototype In the second phase, the prototype discussed in section 5.1 was de-
signed and implemented in weekly sprints. Preceding these sprints, a rough design
of the prototype’s architecture and runtime behaviour was worked out in one week
that would serve as a base for further design refinement and implementation in the
sprints. These sprints ran for eight weeks in total: the initial design turned out to be
too oversimplified so that sprints aiming to design and implement specific compo-
nents were conducted rather isolated from other components that still needed to be
worked on. As a result, both the integration of individual components and their in-
teraction would fail and require redesigns and time-consuming adjustments to their
implementation. Also, neither was the prototype mature enough to be used as a
proxy application, nor was the resulting design and implementation clean enough
to suggest putting further effort into working on them. After these eight sprints,
work on this prototype was stopped and the expert interviews discussed in section
5.2 were prepared and conducted. It was found that the project was technically chal-
lenging and more complex than initially anticipated so the expert interviews were
conducted to aid in re-engineering the design concept.

3. Functional Prototype The third phase was intended to yield a design concept
mature enough to both fulfil realistic requirements to a proxy application and be im-
plemented. This was initiated by switching the technology stack from TypeScript
to Python and re-designing and re-implementing large parts of the first prototype.
In order to avoid the same mistake of refining a vague design concept and spending
time adjusting the design and implementation to make them work, two weeks were
spent on iterations of new design concepts discussed in chapter 6. These concepts
did not only define single components but also interfaces that specified how those

73



8. Evaluation and Lessons Learned

Phase / Task Duration

1. Preparation 3 weeks (12%)

Literature Research 1 week
Testbed Configuration 2 weeks

2. TypeScript Prototype 10 weeks (40%)

Prototype Conception 1 week
Prototype Implementation 8 weeks
Expert Interviews 1 week

3. Python Prototype 12 weeks (48%)

RC Conception 2 weeks
RC Implementation 10 weeks

Total 25 weeks

Table 8.2.: Actual schedule of the project

components interacted with each other, aiming for clear separation of components
and high flexibility in implementation. Components of the prototype that were in-
dependent of the communication protocols used at runtime, such as NetStacks and
FSMs, were implemented first over the span of four weeks. Then, implementations
for supporting the HTTP, WS and MQTT protocols followed over a span of another
six weeks. Work on this prototype was stopped after those ten weeks as the techni-
cal difficulties discussed in section 8.1.2 made estimations over the remaining time
needed to finish the prototype both hard to make and rather unreliable.

4. Finalization The final phase was intended to conduct a case study on how the
proxy application would perform on scenario # 2 from section 5.1.1. Tests were
made to run the proxy application in the testbed shown in section 5.1.4 which fea-
tured the same communication protocols that were used in scenario # 2. However,
the proxy application failed to reliably transmit or encode the messages sent be-
tween the MQTT client and broker, thus resulting in a broken communication chan-
nel. The complex runtime behaviour and very time-consuming debugging of the
proxy application (further elaborated on in section 8.1.2) lead to the decision to
stop the project.
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Table 8.2 shows the actual schedule of the thesis. As can be seen, 88% (22 weeks) of
the time working on the thesis was spent designing and implementing the prototypes
compared to a planned portion of roughly 60% (14 weeks).

8.1.2. Development Challenges

There was a series of development challenges that slowed down implementation of
both prototypes considerably:

Complex runtime behaviour The combination of nested FSMs and pipelines lead
to several problems during development. Even comparatively simple scenarios to
use the proxy application in required a complete configuration file. This file was
made of a global state machine and at least one network stack. This lead to a dy-
namic and long chain of references at runtime that made tracing back calls and
attributing them to specific instances difficult.
Some problems such as a timing problem in the implementation of FSMs were very
time consuming to debug: a FSM would change its state when any of its rules was
evaluated successfully and indicated a state change. By design, all FSMs of an
active netstack would evaluate their rules when a message entered or left any net-
stack. When a higher-level FSM (e.g. the global state-machine) changed its state
while a message was still being processed in a lower-level FSM, the higher-level
state-machine would change to another netstack, thus disconnect the lower-level
state-machine. Eventually, the message would be processed back up and run into a
pipe that had no upstream connection anymore, raising an exception and terminat-
ing the program. This particular error was discovered during the implementation
and testing of the MQTT encoder, in a runtime setup that involved a global default
state-machine with a default TCP netstack and a state-machine that handled HTTP
to WS upgrades and processed MQTT messages utilizing network stacks for HTTP
and WS/MQTT.
Other problems uncovered design flaws and required prompt changes to the soft-
ware design or, in some cases, introduced new constraints to the project. One
such example was discovered while testing the HTTP encoder implementation using
Mozilla FireFox as an HTTP client. When browsing websites, the browser would
open multiple connections to the target host to acquire multiple files at the same
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time1. This required the proxy application to instantiate a new pipeline per incom-
ing connection rather than reside on using a single pipeline. However, the pipeline
design dictated that pipes were connected to at most one preceding and one suc-
ceeding pipe. In order to connect pipelines to FSMs, the FSMs needed to provide a
pipe-interface themselves. Thus, when instantiating multiple pipelines, these could
not be connected to the global state-machine because the global state-machine’s
pipe-interface could only be connected to a single pipeline at a time. Therefore, a
multiplexing pipe needed to be implemented to solve this issue. Alternatively, the
proxy application could enforce instantiation of one single pipeline only to avoid
changes to the software design. For a lab environment, enforcing the use of a single
connection might work, however in real scenarios this constraint could potentially
lead to the proxy application breaking applications at runtime. To enable future im-
plementations to support multiple connections, the software design was changed in
a way that would allow the proxy to handle multiple connections. However, due to
its academic nature, the prototype would only support a single connection at a time
to reduce complexity.

Open source libraries Both prototypes made use of open source libraries that im-
plemented various protocols and included serialization and de-serialization routines
for handling protocol specific packets. However, such libraries appeared to be in-
tended to be used for developing applications that used those protocols as a means
for transporting data rather than directly parsing packets.
Usually, these libraries would offer an API that allowed to instantiate and operate
clients and servers and bind callbacks to events. The implementations of packet
serialization and de-serialization were often times hidden through encapsulation,
missing typings or poorly documented. For instance, the JavaScript library “ws”2

provided methods for serialization and de-serialization but lacked typings. Typ-
ings for this library were made available by the project “DefinitelyTyped”, how-
ever those did not include the classes relevant for serialization and de-serialization
(“Sender” and “Receiver”)3. At the time of implementing the Python prototype, it
used the library “websockets” that offered only an async de-serialization method
(“framing.Frame.read”), requiring the use of asyncio which was circumvented by
implementing a wrapper around it.

1For testing single HTTP connections, the key network.http.max-connections-per-server could be set to 1 in
the about:config page.

2https://github.com/websockets/ws, version 7.0.0, commit 092a822a
3https://github.com/DefinitelyTyped/DefinitelyTyped/, commit 4bf23527
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The Python prototype also used the “hbmqtt” library to (de-)serialize MQTT mes-
sages. The library used an object-oriented implementation for (de-)serializing MQTT
messages where a class for each MQTT message type (e.g. CONNECT, CON-

NACK...) inherited from an abstract “MQTTPacket” superclass that defined a “to_
bytes” method for serialization and an async “from_stream” method for (de-) se-
rialization. Since the library did not implement a generic method that parsed a
byte-buffer and returned the appropriate MQTT message object, this logic had to
be implemented as part of the work in the prototype, requiring investigation of the
(largely uncommented) source code of the library as its documentation did not cover
these internal (de-)serialization methods but focused on high-level use of the API it
implemented.
From a software engineering point of view, omitting public interfaces to inter-
nal (de-)serialization methods and forcing specific programming patterns (such as
async programming) are perfectly valid decisions in the context of single, individ-
ual modules. However, for those reasons, making use of the functionalities imple-
mented in those libraries, was not trivial. It involved developing workarounds and
investigating the libraries’ source code which in turn took up time during the imple-
mentation phases.
Then there were also instances of incomplete documentation: the Python library
“websockets” implemented (de-)serialization of WS packets and also implemented
the PMCE of the WS protocol. Calling the (de-)serialization methods of the “web-
sockets” library and specifying the use of PMCE, the first incoming and outgoing
messages would be compressed correctly, however following messages would be
compressed incorrectly. This rendered the prototype useless as WS may use PMCE
by default to reduce bandwidth. The library failed to raise exceptions or return er-
ror codes so from the prototype’s runtime point of view it appeared to work just
fine. After investigating the library’s source code it was found that the instances
implementing the extension were stateful. When supplying newly created instances
of said extension implementation to the (de-)serialization methods, they worked as
intended, compressing and decompressing any amount of WS packets. This could
be due to a multitude of reasons including improper use of the PMCE instances
or improper calling of the (de-)serialization methods. No documentation could be
found about specifics on those specific topics, though.
For Python libraries, one reason why documentation was in some cases sparse, only
documented high-level features and largely omitted in-code documentation (such
as comments) might be the “pythonic” approach to writing Python code. While
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this way of programming may help to understand individual methods or even al-
gorithms that use multiple methods, it does not by itself aid in documentation of
high-level concepts or complex interaction. Another reason for sparse documenta-
tion in open source libraries might be the developers’ focus on implementing more
features or improving the code-base instead of aiming for more complete documen-
tation. Contrary to commercial products, there usually are no monetary incentives
for developers of open source software to write documentation.

8.2. Qualitative Overview: Deliverables

The following paragraphs evaluate what requirements were fulfilled by the design
concepts discussed in chapter 6 and the implementation of the monolithic design
presented in chapter 7.

F1 Protocols: Both design concepts address this requirement and share the same
IEncoder interface that abstracts message (de-)serialization. Also, net-riot imple-
mented most of the mandated suite of protocols (HTTP, WS, MQTT), lacking only
an implementation of the Modbus TCP protocol.

F2 Network Stacks: The design concepts fulfil this requirement by envisioning a
variant of the abstract factory pattern in the Site component used for dynamic in-
stantiation of configured network stacks and FSMs. In net-riot, JSON and JSON
schemas are used as the file format for configuration files, allowing formal specifi-
cation of network stacks and FSMs.

F3 State-Machines: The monolithic design concept describes FSMs that feature
an active states and rule-based transitions between states. The prototype implements
the rules as scripts using Python’s exec function.

F4 Integration: While neither of the design concepts defined explicit components
or classes for integrating external software, they provide a basis that such integra-
tion components can be built upon (e.g. by deriving from BasePipe). However, the
interfaces of such components need to be well-defined to ensure reusability. Con-
sequently, net-riot did not implement integration capabilities.
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F5 Scripting: The monolithic design concept fulfils this requirement by the defini-
tion of the ProcessingPipe class and the IProcessor interface that allow script-based
transformation of messages. net-riot implements these classes and makes use of the
Script class that provides execution of scripts at runtime by making use of Python’s
exec function.

F6 Logging: Similarly to “F4 Integration”, logging capabilities were not explicitly
defined by the design concepts and not implemented in net-riot.

N1 Platform Compatibility: Both design concepts are platform agnostic. Specif-
ically, the distributed proxy design further improved on this requirement by al-
lowing for distributing protocol implementations (i.e. IEncoder implementations)
and transformation features (i.e. IProcessor implementations) across multiple ma-
chines. net-riot was written in Python, was tested on Ubuntu and should theoreti-
cally be executable on Windows and macOS machines, too.

N2 Reusability: By fulfilling “F2 Network Stacks” and “F3 State-Machines” and
aiming for high flexibility in implementation, both design concepts promise high
reusability. Due to its limitation on a single scenario and partial implementation,
net-riot’s reusability is limited.

N3 Open Source: The design concepts were conceived with being used in an open
source project in mind. Their documentation (this thesis) provides high-level de-
scriptions of their design principles and components. While the monolithic design
is well-defined, the distributed design is not yet fully defined and requires further
work (as described in section 6.2.4). As of writing this thesis, net-riot developed as
an internal project at NVISO and therefore closed-source software. However, the
goal is to make it available to the general public as open-source software once it
reached a satisfying maturity level.

N4 Extensibility: Both design concepts feature high extensibility by hiding im-
plementation details behind interface definitions. Protocol implementations can be
implemented by implementing a single interface, IEncoder. Since net-riot defines
the same interfaces and implements those itself, it too is highly extensible.
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N5 Deployment: The design concepts do not address deployment explicitly. By
choosing Python as its programming language though, net-riot can be packaged and
containerized and thus employs repeatable and reliable methods for deployment.

8.3. Lessons Learned

During the various phases of the work performed during this thesis, a set of valuable
lessons learned was found:

Careful evaluation of third-party technologies: shortcomings of software libraries
such as restrictive design choices and a lack of documentation were recurring prob-
lems during implementation. Therefore, the design architecture and other docu-
mentation of such libraries should be studied before using them. Lack of sufficient
documentation should be declared an exclusion criteria.

Detect and react to an increase of problems during implementation: Although
the above-mentioned prior evaluation of third-party technologies may constitute an
effective mitigation to the risk of said technologies failing, unforeseen problems
can still occur during implementation. Thus, a reactive measure must be defined to
mitigate this risk. When confronted with an ever-increasing number of problems,
the technology choice should be re-evaluated as soon as possible.

Conduct concise feasibility studies before committing to a project: Especially in
software projects that feature many and complex functionalities, concise feasibility
studies should be conducted prior to committing to a project. These feasibility
studies can be conducted by implementing Proof-of-Concept (PoC) prototypes and
reviewing literature. They should be conducted in a well-defined time-span and
evaluated afterwards. This can aid in identifying poorly understood requirements
and infeasible technical requirements early.

Define and adhere to an incremental development process: The work on this
thesis, the design concepts and implementations was performed in an iterative de-
velopment process. However, it lacked clear evaluation of artefacts and was fo-
cused on implementation, neglecting necessary changes to the underlying design
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concepts. Therefore, defining and adhering to an incremental development process
is suggested to ensure regular evaluation of artefacts and design decisions.
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Chapter 9

Summary

This chapter provides a summary of the design concepts presented in chapter 6 and
the implementation of one of the concepts in chapter 7.

9.1. Design Concepts

In chapter 6, the rough and vague design of the first prototype discussed in section
5.1.3 was further refined over the course of two iterations.
The first design concept presented in section 6.1 describes a monolithic proxy appli-
cation that builds on the basic initial design which makes extensive use of the pipes
and filters design pattern for message routing. At its core it sends and receives pack-
ets (messages) through gateways and (de-)serializes and transforms them through
network stacks. It also features state-machines that allow implementation of com-
plex logic of message (de-)serialization and transformation by allowing the binding
of individual network stacks to states and triggering state transitions programmati-
cally through the use of scripts. This results in a potentially deeply nested hierarchy
of state-machines and network stacks.
The second design concept discussed in section 6.2 is an iteration of the mono-
lithic design concept and describes a distributed proxy application that isolates (de-
)serialization and transformation of messages from the internal proxy application
logic. To decouple these low-level tasks from the high-level application logic of the
proxy application, the concept introduces interfaces for remote units that provide
access to specific features (i.e. (de-)serialization) and an interface for the central
proxy application that allowed registering these remote units. Also, the nested hier-
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archy of state-machines and network stacks is flattened and organized centrally in a
repository in the central proxy application.
Both concepts feature distinct advantages and disadvantages and are compared in
section 6.2.5.

9.2. Implementation

Chapter 7 shows an exemplaric implementation of the monolithic design concept
discussed in section 6.1 under the working title “net-riot”. The monolithic design
concept was chosen for implementation due to its proven core ideas and its com-
paratively high maturity. The second example scenario presented in section 5.1.1
was used for reference because it features a nested communication stack and a cor-
responding testbed has already been implemented in section 5.1.4. For this imple-
mentation, Python is used because of its flexibility, low barrier of entry and rich
package ecosystem.
Since the reference scenario makes use of the HTTP, WS and MQTT protocols that
used TCP as an underlying transport protocol, TCP gateways are implemented in
net-riot as a MITM interface that external devices such as IoT devices and cloud
servers can connect to. For HTTP (de-)serialization, net-riot implements a custom
encoder while for WS and MQTT existing libraries are used.
For representation of stacked communication protocols (such as MQTT being trans-
ported via WS), network stacks and state-machines were implemented: network
stacks bundle a series of connected pipes that perform operations on messages,
such as (de-)serializing and manipulating messages. State-machines allow select-
ing which network stacks to actively use by binding them to individual states.
State-machines regularly evaluate their context and check whether states should be
changed dependent on their registered transitions’ rules. These ScriptRules execute
scripts which can examine and manipulate the states’ and state-machines’ context
information.
A central task left open for implementation by the design concept is the config-
uration of the proxy application for specific scenarios and the resulting dynamic
instantiation and parametrisation of state-machines and network stacks. In net-riot,
JSON files and schemas were used for configuration specification and validation.
Also, a recursive variance of the abstract factory design pattern was implemented
for dynamic instantiation of objects defined in the configuration files. Figure 9.1
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shows the output of the “cloc” utility program executed on net-riot’s source code.
While net-riot implemented all components required by the scenario it was designed
for, bugs in the implementation and challenging debugging ultimately lead to net-
riot being unable to operate correctly in the testbed.

Figure 9.1.: The lines of code in net-riot calculated by the “cloc” utility program.
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Chapter 10

Conclusion

The goal of this thesis was to develop a concept for a modular proxy application
that allows penetration testers to assess the security implementations of IoT appli-
cations.
Two design concepts were proposed; one featuring a monolithic and the other fea-
turing a distributed software architecture. They share common components and
interfaces for essential tasks such as protocol specific (de-)serialization of network
packets. Due to these concepts being operating system, platform and framework
agnostic, they can be implemented for a wide range of systems.
An exemplaric implementation of the monolithic design concept, net-riot, realized
core components used for routing, (de-)serializing and transforming HTTP, WS
and MQTT packets. Due to bugs in its implementation that affect the stacking of its
MQTT and WS protocol implementations and the lack of time to fix these, net-riot
is not operable in the scenario it was designed for yet. However, tests conducted
with network stacks incorporating HTTP and WS communication were successful.
While these bugs can most likely be resolved, future effort might instead be better
invested in completing the distributed design concept and basing an implementation
on it.
Especially the complex runtime behaviour and high amount of abstraction required
to design protocol-agnostic interfaces, proved to be challenging during the work on
this thesis. Therefore, future work on this topic should aim to reduce the impact of
these challenges by taking them into account during the development process:

• Flat data-structures and hierarchies can improve the traceability of data flow
and thus support debugging.
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• A contact person that is proficient in penetration testing and familiar with its
challenges and requirements should be interviewed and asked for feedback
on a regular basis.

• The creation and configuration of test environments should be streamlined so
that testing can be performed regularly, ensuring that implemented features
work correctly and according to specification.

10.1. Outlook

While the work on this thesis is completed, the project of designing and implement-
ing a modular proxy application for testing IoT applications is not. There is a set of
opportunities to continue this work:

• The distributed design concept promises attractive quality attributes such as
even better deployment capabilities and extensibility. Also, its flattened hier-
archy of FSMs and network stacks improve the debugging process. However,
it was not finished and further work is required to fully define its components
and interfaces.

• Consequently, an implementation based on the distributed design concept
promises to be more feasible than net-riot’s implementation based on the
monolithic concept. The barrier of entry to such an implementation is lowered
further due to the fact that the separation of proxy application and extensions
allows free choice of multiple programming languages, platforms and frame-
works for the systems.

• Furthermore, an evaluation of the usefulness of the modular proxy application
is still an interesting endeavour. Whether it is based on the monolithic or the
distributed design concept is not relevant since, from a black-box perspective,
they perform the same tasks.
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Appendix B

Interview Guideline

1. Experiences with IoT

a) Which technologies (software/protocols/platforms) were used in those
applications?

b) What context (home/industrial) were they used in?

c) Were there any special constrains (e.g. real-time systems) when working
with them?

d) How were the tests set up? (e.g. dedicated lab vs. on-site testing, sin-
gle/multiple devices)

e) Were those applications typical representatives for their field of use?

2. Processes in Everyday Life

a) What are the goals and scopes of your penetration tests?

b) Which tasks do these goals typically involve?

c) Which tools do you use in the process and how regularly do you create
specific tools yourself?

d) What problems do you typically face during tests?

e) Could specialized tools further improve your everyday work? If so, what
would those tools do?

3. The Future of IoT

a) What do you think will IoT applications be like in the future? (e.g.
regarding device specifications, cloud services, mobile integrations)

b) What are the current challenges when working with IoT applications?

c) Lastly, what do you think will be future challenges when working with
IoT?
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