-
Notifications
You must be signed in to change notification settings - Fork 207
/
Copy pathlib.rs
1895 lines (1704 loc) · 52.9 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2013-2014 The Rust Project Developers.
// Copyright 2018 The Uuid Project Developers.
//
// See the COPYRIGHT file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Generate and parse universally unique identifiers (UUIDs).
//!
//! Here's an example of a UUID:
//!
//! ```text
//! 67e55044-10b1-426f-9247-bb680e5fe0c8
//! ```
//!
//! A UUID is a unique 128-bit value, stored as 16 octets, and regularly
//! formatted as a hex string in five groups. UUIDs are used to assign unique
//! identifiers to entities without requiring a central allocating authority.
//!
//! They are particularly useful in distributed systems, though can be used in
//! disparate areas, such as databases and network protocols. Typically a UUID
//! is displayed in a readable string form as a sequence of hexadecimal digits,
//! separated into groups by hyphens.
//!
//! The uniqueness property is not strictly guaranteed, however for all
//! practical purposes, it can be assumed that an unintentional collision would
//! be extremely unlikely.
//!
//! UUIDs have a number of standardized encodings that are specified in [RFC 9562](https://www.ietf.org/rfc/rfc9562.html).
//!
//! # Getting started
//!
//! Add the following to your `Cargo.toml`:
//!
//! ```toml
//! [dependencies.uuid]
//! version = "1.11.1"
//! features = [
//! "v4", # Lets you generate random UUIDs
//! "fast-rng", # Use a faster (but still sufficiently random) RNG
//! "macro-diagnostics", # Enable better diagnostics for compile-time UUIDs
//! ]
//! ```
//!
//! When you want a UUID, you can generate one:
//!
//! ```
//! # fn main() {
//! # #[cfg(feature = "v4")]
//! # {
//! use uuid::Uuid;
//!
//! let id = Uuid::new_v4();
//! # }
//! # }
//! ```
//!
//! If you have a UUID value, you can use its string literal form inline:
//!
//! ```
//! use uuid::{uuid, Uuid};
//!
//! const ID: Uuid = uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
//! ```
//!
//! # Working with different UUID versions
//!
//! This library supports all standardized methods for generating UUIDs through individual Cargo features.
//!
//! By default, this crate depends on nothing but the Rust standard library and can parse and format
//! UUIDs, but cannot generate them. Depending on the kind of UUID you'd like to work with, there
//! are Cargo features that enable generating them:
//!
//! * `v1` - Version 1 UUIDs using a timestamp and monotonic counter.
//! * `v3` - Version 3 UUIDs based on the MD5 hash of some data.
//! * `v4` - Version 4 UUIDs with random data.
//! * `v5` - Version 5 UUIDs based on the SHA1 hash of some data.
//! * `v6` - Version 6 UUIDs using a timestamp and monotonic counter.
//! * `v7` - Version 7 UUIDs using a Unix timestamp.
//! * `v8` - Version 8 UUIDs using user-defined data.
//!
//! This library also includes a [`Builder`] type that can be used to help construct UUIDs of any
//! version without any additional dependencies or features. It's a lower-level API than [`Uuid`]
//! that can be used when you need control over implicit requirements on things like a source
//! of randomness.
//!
//! ## Which UUID version should I use?
//!
//! If you just want to generate unique identifiers then consider version 4 (`v4`) UUIDs. If you want
//! to use UUIDs as database keys or need to sort them then consider version 7 (`v7`) UUIDs.
//! Other versions should generally be avoided unless there's an existing need for them.
//!
//! Some UUID versions supersede others. Prefer version 6 over version 1 and version 5 over version 3.
//!
//! # Other features
//!
//! Other crate features can also be useful beyond the version support:
//!
//! * `macro-diagnostics` - enhances the diagnostics of `uuid!` macro.
//! * `serde` - adds the ability to serialize and deserialize a UUID using
//! `serde`.
//! * `borsh` - adds the ability to serialize and deserialize a UUID using
//! `borsh`.
//! * `arbitrary` - adds an `Arbitrary` trait implementation to `Uuid` for
//! fuzzing.
//! * `fast-rng` - uses a faster algorithm for generating random UUIDs.
//! This feature requires more dependencies to compile, but is just as suitable for
//! UUIDs as the default algorithm.
//! * `bytemuck` - adds a `Pod` trait implementation to `Uuid` for byte manipulation
//!
//! # Unstable features
//!
//! Some features are unstable. They may be incomplete or depend on other
//! unstable libraries. These include:
//!
//! * `zerocopy` - adds support for zero-copy deserialization using the
//! `zerocopy` library.
//!
//! Unstable features may break between minor releases.
//!
//! To allow unstable features, you'll need to enable the Cargo feature as
//! normal, but also pass an additional flag through your environment to opt-in
//! to unstable `uuid` features:
//!
//! ```text
//! RUSTFLAGS="--cfg uuid_unstable"
//! ```
//!
//! # Building for other targets
//!
//! ## WebAssembly
//!
//! For WebAssembly, enable the `js` feature:
//!
//! ```toml
//! [dependencies.uuid]
//! version = "1.11.1"
//! features = [
//! "v4",
//! "v7",
//! "js",
//! ]
//! ```
//!
//! ## Embedded
//!
//! For embedded targets without the standard library, you'll need to
//! disable default features when building `uuid`:
//!
//! ```toml
//! [dependencies.uuid]
//! version = "1.11.1"
//! default-features = false
//! ```
//!
//! Some additional features are supported in no-std environments:
//!
//! * `v1`, `v3`, `v5`, `v6`, and `v8`.
//! * `serde`.
//!
//! If you need to use `v4` or `v7` in a no-std environment, you'll need to
//! follow [`getrandom`'s docs] on configuring a source of randomness
//! on currently unsupported targets. Alternatively, you can produce
//! random bytes yourself and then pass them to [`Builder::from_random_bytes`]
//! without enabling the `v4` or `v7` features.
//!
//! # Examples
//!
//! Parse a UUID given in the simple format and print it as a URN:
//!
//! ```
//! # use uuid::Uuid;
//! # fn main() -> Result<(), uuid::Error> {
//! let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
//!
//! println!("{}", my_uuid.urn());
//! # Ok(())
//! # }
//! ```
//!
//! Generate a random UUID and print it out in hexadecimal form:
//!
//! ```
//! // Note that this requires the `v4` feature to be enabled.
//! # use uuid::Uuid;
//! # fn main() {
//! # #[cfg(feature = "v4")] {
//! let my_uuid = Uuid::new_v4();
//!
//! println!("{}", my_uuid);
//! # }
//! # }
//! ```
//!
//! # References
//!
//! * [Wikipedia: Universally Unique Identifier](http://en.wikipedia.org/wiki/Universally_unique_identifier)
//! * [RFC 9562: Universally Unique IDentifiers (UUID)](https://www.ietf.org/rfc/rfc9562.html).
//!
//! [`wasm-bindgen`]: https://crates.io/crates/wasm-bindgen
//! [`cargo-web`]: https://crates.io/crates/cargo-web
//! [`getrandom`'s docs]: https://docs.rs/getrandom
#![no_std]
#![deny(missing_debug_implementations, missing_docs)]
#![allow(clippy::mixed_attributes_style)]
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://docs.rs/uuid/1.11.1"
)]
#[cfg(any(feature = "std", test))]
#[macro_use]
extern crate std;
#[cfg(all(not(feature = "std"), not(test)))]
#[macro_use]
extern crate core as std;
#[cfg(all(uuid_unstable, feature = "zerocopy"))]
use zerocopy::{IntoBytes, FromBytes, Immutable, KnownLayout, Unaligned};
mod builder;
mod error;
mod parser;
pub mod fmt;
pub mod timestamp;
pub use timestamp::{context::NoContext, ClockSequence, Timestamp};
#[cfg(any(feature = "v1", feature = "v6"))]
pub use timestamp::context::Context;
#[cfg(feature = "v7")]
pub use timestamp::context::ContextV7;
#[cfg(feature = "v1")]
#[doc(hidden)]
// Soft-deprecated (Rust doesn't support deprecating re-exports)
// Use `Context` from the crate root instead
pub mod v1;
#[cfg(feature = "v3")]
mod v3;
#[cfg(feature = "v4")]
mod v4;
#[cfg(feature = "v5")]
mod v5;
#[cfg(feature = "v6")]
mod v6;
#[cfg(feature = "v7")]
mod v7;
#[cfg(feature = "v8")]
mod v8;
#[cfg(feature = "md5")]
mod md5;
#[cfg(feature = "rng")]
mod rng;
#[cfg(feature = "sha1")]
mod sha1;
mod external;
#[macro_use]
mod macros;
#[doc(hidden)]
#[cfg(feature = "macro-diagnostics")]
pub extern crate uuid_macro_internal;
#[doc(hidden)]
pub mod __macro_support {
pub use crate::std::result::Result::{Err, Ok};
}
use crate::std::convert;
pub use crate::{builder::Builder, error::Error};
/// A 128-bit (16 byte) buffer containing the UUID.
///
/// # ABI
///
/// The `Bytes` type is always guaranteed to be have the same ABI as [`Uuid`].
pub type Bytes = [u8; 16];
/// The version of the UUID, denoting the generating algorithm.
///
/// # References
///
/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
#[derive(Clone, Copy, Debug, PartialEq)]
#[non_exhaustive]
#[repr(u8)]
pub enum Version {
/// The "nil" (all zeros) UUID.
Nil = 0u8,
/// Version 1: Timestamp and node ID.
Mac = 1,
/// Version 2: DCE Security.
Dce = 2,
/// Version 3: MD5 hash.
Md5 = 3,
/// Version 4: Random.
Random = 4,
/// Version 5: SHA-1 hash.
Sha1 = 5,
/// Version 6: Sortable Timestamp and node ID.
SortMac = 6,
/// Version 7: Timestamp and random.
SortRand = 7,
/// Version 8: Custom.
Custom = 8,
/// The "max" (all ones) UUID.
Max = 0xff,
}
/// The reserved variants of UUIDs.
///
/// # References
///
/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
#[derive(Clone, Copy, Debug, PartialEq)]
#[non_exhaustive]
#[repr(u8)]
pub enum Variant {
/// Reserved by the NCS for backward compatibility.
NCS = 0u8,
/// As described in the RFC 9562 Specification (default).
/// (for backward compatibility it is not yet renamed)
RFC4122,
/// Reserved by Microsoft for backward compatibility.
Microsoft,
/// Reserved for future expansion.
Future,
}
/// A Universally Unique Identifier (UUID).
///
/// # Examples
///
/// Parse a UUID given in the simple format and print it as a urn:
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
///
/// println!("{}", my_uuid.urn());
/// # Ok(())
/// # }
/// ```
///
/// Create a new random (V4) UUID and print it out in hexadecimal form:
///
/// ```
/// // Note that this requires the `v4` feature enabled in the uuid crate.
/// # use uuid::Uuid;
/// # fn main() {
/// # #[cfg(feature = "v4")] {
/// let my_uuid = Uuid::new_v4();
///
/// println!("{}", my_uuid);
/// # }
/// # }
/// ```
///
/// # Formatting
///
/// A UUID can be formatted in one of a few ways:
///
/// * [`simple`](#method.simple): `a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8`.
/// * [`hyphenated`](#method.hyphenated):
/// `a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8`.
/// * [`urn`](#method.urn): `urn:uuid:A1A2A3A4-B1B2-C1C2-D1D2-D3D4D5D6D7D8`.
/// * [`braced`](#method.braced): `{a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8}`.
///
/// The default representation when formatting a UUID with `Display` is
/// hyphenated:
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// "a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
/// my_uuid.to_string(),
/// );
/// # Ok(())
/// # }
/// ```
///
/// Other formats can be specified using adapter methods on the UUID:
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("a1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// "urn:uuid:a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8",
/// my_uuid.urn().to_string(),
/// );
/// # Ok(())
/// # }
/// ```
///
/// # Endianness
///
/// The specification for UUIDs encodes the integer fields that make up the
/// value in big-endian order. This crate assumes integer inputs are already in
/// the correct order by default, regardless of the endianness of the
/// environment. Most methods that accept integers have a `_le` variant (such as
/// `from_fields_le`) that assumes any integer values will need to have their
/// bytes flipped, regardless of the endianness of the environment.
///
/// Most users won't need to worry about endianness unless they need to operate
/// on individual fields (such as when converting between Microsoft GUIDs). The
/// important things to remember are:
///
/// - The endianness is in terms of the fields of the UUID, not the environment.
/// - The endianness is assumed to be big-endian when there's no `_le` suffix
/// somewhere.
/// - Byte-flipping in `_le` methods applies to each integer.
/// - Endianness roundtrips, so if you create a UUID with `from_fields_le`
/// you'll get the same values back out with `to_fields_le`.
///
/// # ABI
///
/// The `Uuid` type is always guaranteed to be have the same ABI as [`Bytes`].
#[derive(Clone, Copy, Eq, Hash, Ord, PartialEq, PartialOrd)]
#[cfg_attr(
all(uuid_unstable, feature = "zerocopy"),
derive(IntoBytes, FromBytes, KnownLayout, Immutable, Unaligned)
)]
#[cfg_attr(
feature = "borsh",
derive(borsh_derive::BorshDeserialize, borsh_derive::BorshSerialize)
)]
#[repr(transparent)]
#[cfg_attr(
feature = "bytemuck",
derive(bytemuck::Zeroable, bytemuck::Pod, bytemuck::TransparentWrapper)
)]
pub struct Uuid(Bytes);
impl Uuid {
/// UUID namespace for Domain Name System (DNS).
pub const NAMESPACE_DNS: Self = Uuid([
0x6b, 0xa7, 0xb8, 0x10, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
0xc8,
]);
/// UUID namespace for ISO Object Identifiers (OIDs).
pub const NAMESPACE_OID: Self = Uuid([
0x6b, 0xa7, 0xb8, 0x12, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
0xc8,
]);
/// UUID namespace for Uniform Resource Locators (URLs).
pub const NAMESPACE_URL: Self = Uuid([
0x6b, 0xa7, 0xb8, 0x11, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
0xc8,
]);
/// UUID namespace for X.500 Distinguished Names (DNs).
pub const NAMESPACE_X500: Self = Uuid([
0x6b, 0xa7, 0xb8, 0x14, 0x9d, 0xad, 0x11, 0xd1, 0x80, 0xb4, 0x00, 0xc0, 0x4f, 0xd4, 0x30,
0xc8,
]);
/// Returns the variant of the UUID structure.
///
/// This determines the interpretation of the structure of the UUID.
/// This method simply reads the value of the variant byte. It doesn't
/// validate the rest of the UUID as conforming to that variant.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use uuid::{Uuid, Variant};
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
///
/// assert_eq!(Variant::RFC4122, my_uuid.get_variant());
/// # Ok(())
/// # }
/// ```
///
/// # References
///
/// * [Variant Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.1)
pub const fn get_variant(&self) -> Variant {
match self.as_bytes()[8] {
x if x & 0x80 == 0x00 => Variant::NCS,
x if x & 0xc0 == 0x80 => Variant::RFC4122,
x if x & 0xe0 == 0xc0 => Variant::Microsoft,
x if x & 0xe0 == 0xe0 => Variant::Future,
// The above match arms are actually exhaustive
// We just return `Future` here because we can't
// use `unreachable!()` in a `const fn`
_ => Variant::Future,
}
}
/// Returns the version number of the UUID.
///
/// This represents the algorithm used to generate the value.
/// This method is the future-proof alternative to [`Uuid::get_version`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
///
/// assert_eq!(3, my_uuid.get_version_num());
/// # Ok(())
/// # }
/// ```
///
/// # References
///
/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
pub const fn get_version_num(&self) -> usize {
(self.as_bytes()[6] >> 4) as usize
}
/// Returns the version of the UUID.
///
/// This represents the algorithm used to generate the value.
/// If the version field doesn't contain a recognized version then `None`
/// is returned. If you're trying to read the version for a future extension
/// you can also use [`Uuid::get_version_num`] to unconditionally return a
/// number. Future extensions may start to return `Some` once they're
/// standardized and supported.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # use uuid::{Uuid, Version};
/// # fn main() -> Result<(), uuid::Error> {
/// let my_uuid = Uuid::parse_str("02f09a3f-1624-3b1d-8409-44eff7708208")?;
///
/// assert_eq!(Some(Version::Md5), my_uuid.get_version());
/// # Ok(())
/// # }
/// ```
///
/// # References
///
/// * [Version Field in RFC 9562](https://www.ietf.org/rfc/rfc9562.html#section-4.2)
pub const fn get_version(&self) -> Option<Version> {
match self.get_version_num() {
0 if self.is_nil() => Some(Version::Nil),
1 => Some(Version::Mac),
2 => Some(Version::Dce),
3 => Some(Version::Md5),
4 => Some(Version::Random),
5 => Some(Version::Sha1),
6 => Some(Version::SortMac),
7 => Some(Version::SortRand),
8 => Some(Version::Custom),
0xf => Some(Version::Max),
_ => None,
}
}
/// Returns the four field values of the UUID.
///
/// These values can be passed to the [`Uuid::from_fields`] method to get
/// the original `Uuid` back.
///
/// * The first field value represents the first group of (eight) hex
/// digits, taken as a big-endian `u32` value. For V1 UUIDs, this field
/// represents the low 32 bits of the timestamp.
/// * The second field value represents the second group of (four) hex
/// digits, taken as a big-endian `u16` value. For V1 UUIDs, this field
/// represents the middle 16 bits of the timestamp.
/// * The third field value represents the third group of (four) hex digits,
/// taken as a big-endian `u16` value. The 4 most significant bits give
/// the UUID version, and for V1 UUIDs, the last 12 bits represent the
/// high 12 bits of the timestamp.
/// * The last field value represents the last two groups of four and twelve
/// hex digits, taken in order. The first 1-3 bits of this indicate the
/// UUID variant, and for V1 UUIDs, the next 13-15 bits indicate the clock
/// sequence and the last 48 bits indicate the node ID.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::nil();
///
/// assert_eq!(uuid.as_fields(), (0, 0, 0, &[0u8; 8]));
///
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// uuid.as_fields(),
/// (
/// 0xa1a2a3a4,
/// 0xb1b2,
/// 0xc1c2,
/// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
/// )
/// );
/// # Ok(())
/// # }
/// ```
pub fn as_fields(&self) -> (u32, u16, u16, &[u8; 8]) {
let bytes = self.as_bytes();
let d1 = (bytes[0] as u32) << 24
| (bytes[1] as u32) << 16
| (bytes[2] as u32) << 8
| (bytes[3] as u32);
let d2 = (bytes[4] as u16) << 8 | (bytes[5] as u16);
let d3 = (bytes[6] as u16) << 8 | (bytes[7] as u16);
let d4: &[u8; 8] = convert::TryInto::try_into(&bytes[8..16]).unwrap();
(d1, d2, d3, d4)
}
/// Returns the four field values of the UUID in little-endian order.
///
/// The bytes in the returned integer fields will be converted from
/// big-endian order. This is based on the endianness of the UUID,
/// rather than the target environment so bytes will be flipped on both
/// big and little endian machines.
///
/// # Examples
///
/// ```
/// use uuid::Uuid;
///
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// uuid.to_fields_le(),
/// (
/// 0xa4a3a2a1,
/// 0xb2b1,
/// 0xc2c1,
/// &[0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8],
/// )
/// );
/// # Ok(())
/// # }
/// ```
pub fn to_fields_le(&self) -> (u32, u16, u16, &[u8; 8]) {
let d1 = (self.as_bytes()[0] as u32)
| (self.as_bytes()[1] as u32) << 8
| (self.as_bytes()[2] as u32) << 16
| (self.as_bytes()[3] as u32) << 24;
let d2 = (self.as_bytes()[4] as u16) | (self.as_bytes()[5] as u16) << 8;
let d3 = (self.as_bytes()[6] as u16) | (self.as_bytes()[7] as u16) << 8;
let d4: &[u8; 8] = convert::TryInto::try_into(&self.as_bytes()[8..16]).unwrap();
(d1, d2, d3, d4)
}
/// Returns a 128bit value containing the value.
///
/// The bytes in the UUID will be packed directly into a `u128`.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// uuid.as_u128(),
/// 0xa1a2a3a4b1b2c1c2d1d2d3d4d5d6d7d8,
/// );
/// # Ok(())
/// # }
/// ```
pub const fn as_u128(&self) -> u128 {
u128::from_be_bytes(*self.as_bytes())
}
/// Returns a 128bit little-endian value containing the value.
///
/// The bytes in the `u128` will be flipped to convert into big-endian
/// order. This is based on the endianness of the UUID, rather than the
/// target environment so bytes will be flipped on both big and little
/// endian machines.
///
/// Note that this will produce a different result than
/// [`Uuid::to_fields_le`], because the entire UUID is reversed, rather
/// than reversing the individual fields in-place.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// uuid.to_u128_le(),
/// 0xd8d7d6d5d4d3d2d1c2c1b2b1a4a3a2a1,
/// );
/// # Ok(())
/// # }
/// ```
pub const fn to_u128_le(&self) -> u128 {
u128::from_le_bytes(*self.as_bytes())
}
/// Returns two 64bit values containing the value.
///
/// The bytes in the UUID will be split into two `u64`.
/// The first u64 represents the 64 most significant bits,
/// the second one represents the 64 least significant.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
/// assert_eq!(
/// uuid.as_u64_pair(),
/// (0xa1a2a3a4b1b2c1c2, 0xd1d2d3d4d5d6d7d8),
/// );
/// # Ok(())
/// # }
/// ```
pub const fn as_u64_pair(&self) -> (u64, u64) {
let value = self.as_u128();
((value >> 64) as u64, value as u64)
}
/// Returns a slice of 16 octets containing the value.
///
/// This method borrows the underlying byte value of the UUID.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// let bytes1 = [
/// 0xa1, 0xa2, 0xa3, 0xa4,
/// 0xb1, 0xb2,
/// 0xc1, 0xc2,
/// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
/// ];
/// let uuid1 = Uuid::from_bytes_ref(&bytes1);
///
/// let bytes2 = uuid1.as_bytes();
/// let uuid2 = Uuid::from_bytes_ref(bytes2);
///
/// assert_eq!(uuid1, uuid2);
///
/// assert!(std::ptr::eq(
/// uuid2 as *const Uuid as *const u8,
/// &bytes1 as *const [u8; 16] as *const u8,
/// ));
/// ```
#[inline]
pub const fn as_bytes(&self) -> &Bytes {
&self.0
}
/// Consumes self and returns the underlying byte value of the UUID.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// let bytes = [
/// 0xa1, 0xa2, 0xa3, 0xa4,
/// 0xb1, 0xb2,
/// 0xc1, 0xc2,
/// 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
/// ];
/// let uuid = Uuid::from_bytes(bytes);
/// assert_eq!(bytes, uuid.into_bytes());
/// ```
#[inline]
pub const fn into_bytes(self) -> Bytes {
self.0
}
/// Returns the bytes of the UUID in little-endian order.
///
/// The bytes will be flipped to convert into little-endian order. This is
/// based on the endianness of the UUID, rather than the target environment
/// so bytes will be flipped on both big and little endian machines.
///
/// # Examples
///
/// ```
/// use uuid::Uuid;
///
/// # fn main() -> Result<(), uuid::Error> {
/// let uuid = Uuid::parse_str("a1a2a3a4-b1b2-c1c2-d1d2-d3d4d5d6d7d8")?;
///
/// assert_eq!(
/// uuid.to_bytes_le(),
/// ([
/// 0xa4, 0xa3, 0xa2, 0xa1, 0xb2, 0xb1, 0xc2, 0xc1, 0xd1, 0xd2,
/// 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8
/// ])
/// );
/// # Ok(())
/// # }
/// ```
pub const fn to_bytes_le(&self) -> Bytes {
[
self.0[3], self.0[2], self.0[1], self.0[0], self.0[5], self.0[4], self.0[7], self.0[6],
self.0[8], self.0[9], self.0[10], self.0[11], self.0[12], self.0[13], self.0[14],
self.0[15],
]
}
/// Tests if the UUID is nil (all zeros).
pub const fn is_nil(&self) -> bool {
self.as_u128() == u128::MIN
}
/// Tests if the UUID is max (all ones).
pub const fn is_max(&self) -> bool {
self.as_u128() == u128::MAX
}
/// A buffer that can be used for `encode_...` calls, that is
/// guaranteed to be long enough for any of the format adapters.
///
/// # Examples
///
/// ```
/// # use uuid::Uuid;
/// let uuid = Uuid::nil();
///
/// assert_eq!(
/// uuid.simple().encode_lower(&mut Uuid::encode_buffer()),
/// "00000000000000000000000000000000"
/// );
///
/// assert_eq!(
/// uuid.hyphenated()
/// .encode_lower(&mut Uuid::encode_buffer()),
/// "00000000-0000-0000-0000-000000000000"
/// );
///
/// assert_eq!(
/// uuid.urn().encode_lower(&mut Uuid::encode_buffer()),
/// "urn:uuid:00000000-0000-0000-0000-000000000000"
/// );
/// ```
pub const fn encode_buffer() -> [u8; fmt::Urn::LENGTH] {
[0; fmt::Urn::LENGTH]
}
/// If the UUID is the correct version (v1, v6, or v7) this will return
/// the timestamp in a version-agnostic [`Timestamp`]. For other versions
/// this will return `None`.
///
/// # Roundtripping
///
/// This method is unlikely to roundtrip a timestamp in a UUID due to the way
/// UUIDs encode timestamps. The timestamp returned from this method will be truncated to
/// 100ns precision for version 1 and 6 UUIDs, and to millisecond precision for version 7 UUIDs.
pub const fn get_timestamp(&self) -> Option<Timestamp> {
match self.get_version() {
Some(Version::Mac) => {
let (ticks, counter) = timestamp::decode_gregorian_timestamp(self);
Some(Timestamp::from_gregorian(ticks, counter))
}
Some(Version::SortMac) => {
let (ticks, counter) = timestamp::decode_sorted_gregorian_timestamp(self);
Some(Timestamp::from_gregorian(ticks, counter))
}
Some(Version::SortRand) => {
let millis = timestamp::decode_unix_timestamp_millis(self);
let seconds = millis / 1000;
let nanos = ((millis % 1000) * 1_000_000) as u32;
Some(Timestamp::from_unix_time(seconds, nanos, 0, 0))
}
_ => None,
}
}
/// If the UUID is the correct version (v1, or v6) this will return the
/// node value as a 6-byte array. For other versions this will return `None`.
pub const fn get_node_id(&self) -> Option<[u8; 6]> {
match self.get_version() {
Some(Version::Mac) | Some(Version::SortMac) => {
let mut node_id = [0; 6];
node_id[0] = self.0[10];
node_id[1] = self.0[11];
node_id[2] = self.0[12];
node_id[3] = self.0[13];
node_id[4] = self.0[14];
node_id[5] = self.0[15];
Some(node_id)
}
_ => None,
}
}
}
impl Default for Uuid {
#[inline]
fn default() -> Self {
Uuid::nil()
}
}
impl AsRef<Uuid> for Uuid {
#[inline]
fn as_ref(&self) -> &Uuid {
self
}
}
impl AsRef<[u8]> for Uuid {
#[inline]
fn as_ref(&self) -> &[u8] {
&self.0
}
}
#[cfg(feature = "std")]
impl From<Uuid> for std::vec::Vec<u8> {
fn from(value: Uuid) -> Self {
value.0.to_vec()
}
}
#[cfg(feature = "std")]
impl std::convert::TryFrom<std::vec::Vec<u8>> for Uuid {
type Error = Error;
fn try_from(value: std::vec::Vec<u8>) -> Result<Self, Self::Error> {
Uuid::from_slice(&value)
}
}
#[cfg(feature = "serde")]
pub mod serde {
//! Adapters for alternative `serde` formats.
//!
//! This module contains adapters you can use with [`#[serde(with)]`](https://serde.rs/field-attrs.html#with)
//! to change the way a [`Uuid`](../struct.Uuid.html) is serialized
//! and deserialized.
pub use crate::external::serde_support::{braced, compact, simple, urn};
}
#[cfg(test)]
mod tests {
use super::*;
use crate::std::string::{String, ToString};
#[cfg(all(
target_arch = "wasm32",
target_vendor = "unknown",
target_os = "unknown"
))]
use wasm_bindgen_test::*;
macro_rules! check {
($buf:ident, $format:expr, $target:expr, $len:expr, $cond:expr) => {
$buf.clear();
write!($buf, $format, $target).unwrap();
assert!($buf.len() == $len);
assert!($buf.chars().all($cond), "{}", $buf);